Blind Underwater Image Restoration using Co-Operational Regressor Networks
- URL: http://arxiv.org/abs/2412.03995v1
- Date: Thu, 05 Dec 2024 09:15:21 GMT
- Title: Blind Underwater Image Restoration using Co-Operational Regressor Networks
- Authors: Ozer Can Devecioglu, Serkan Kiranyaz, Turker Ince, Moncef Gabbouj,
- Abstract summary: We propose a novel machine learning model, Co-Operational Regressor Networks (CoRe-Nets)
A CoRe-Net consists of two co-operating networks: the Apprentice Regressor (AR), responsible for image transformation, and the Master Regressor (MR), which evaluates the Peak Signal-to-Noise Ratio (PSNR) of the images generated by the AR and feeds it back to AR.
Our results and the optimized PyTorch implementation of the proposed approach are now publicly shared on GitHub.
- Score: 15.853520058218042
- License:
- Abstract: The exploration of underwater environments is essential for applications such as biological research, archaeology, and infrastructure maintenanceHowever, underwater imaging is challenging due to the waters unique properties, including scattering, absorption, color distortion, and reduced visibility. To address such visual degradations, a variety of approaches have been proposed covering from basic signal processing methods to deep learning models; however, none of them has proven to be consistently successful. In this paper, we propose a novel machine learning model, Co-Operational Regressor Networks (CoRe-Nets), designed to achieve the best possible underwater image restoration. A CoRe-Net consists of two co-operating networks: the Apprentice Regressor (AR), responsible for image transformation, and the Master Regressor (MR), which evaluates the Peak Signal-to-Noise Ratio (PSNR) of the images generated by the AR and feeds it back to AR. CoRe-Nets are built on Self-Organized Operational Neural Networks (Self-ONNs), which offer a superior learning capability by modulating nonlinearity in kernel transformations. The effectiveness of the proposed model is demonstrated on the benchmark Large Scale Underwater Image (LSUI) dataset. Leveraging the joint learning capabilities of the two cooperating networks, the proposed model achieves the state-of-art restoration performance with significantly reduced computational complexity and often presents such results that can even surpass the visual quality of the ground truth with a 2-pass application. Our results and the optimized PyTorch implementation of the proposed approach are now publicly shared on GitHub.
Related papers
- Advanced Underwater Image Quality Enhancement via Hybrid Super-Resolution Convolutional Neural Networks and Multi-Scale Retinex-Based Defogging Techniques [0.0]
The research conducts extensive experiments on real-world underwater datasets to further illustrate the efficacy of the suggested approach.
In real-time underwater applications like marine exploration, underwater robotics, and autonomous underwater vehicles, the combination of deep learning and conventional image processing techniques offers a computationally efficient framework with superior results.
arXiv Detail & Related papers (2024-10-18T08:40:26Z) - UIE-UnFold: Deep Unfolding Network with Color Priors and Vision Transformer for Underwater Image Enhancement [27.535028176427623]
Underwater image enhancement (UIE) plays a crucial role in various marine applications.
Current learning-based approaches frequently lack explicit prior knowledge about the physical processes involved in underwater image formation.
This paper proposes a novel deep unfolding network (DUN) for UIE that integrates color priors and inter-stage feature incorporation.
arXiv Detail & Related papers (2024-08-20T08:48:33Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
Underwater image enhancement (UIE) is a challenging task due to the complex degradation caused by underwater environments.
Previous methods often idealize the degradation process, and neglect the impact of medium noise and object motion on the distribution of image features.
Our approach utilizes predicted images to dynamically update pseudo-labels, adding a dynamic gradient to optimize the network's gradient space.
arXiv Detail & Related papers (2023-12-12T06:07:21Z) - PUGAN: Physical Model-Guided Underwater Image Enhancement Using GAN with
Dual-Discriminators [120.06891448820447]
How to obtain clear and visually pleasant images has become a common concern of people.
The task of underwater image enhancement (UIE) has also emerged as the times require.
In this paper, we propose a physical model-guided GAN model for UIE, referred to as PUGAN.
Our PUGAN outperforms state-of-the-art methods in both qualitative and quantitative metrics.
arXiv Detail & Related papers (2023-06-15T07:41:12Z) - DeepRLS: A Recurrent Network Architecture with Least Squares Implicit
Layers for Non-blind Image Deconvolution [15.986942312624]
We study the problem of non-blind image deconvolution.
We propose a novel recurrent network architecture that leads to very competitive restoration results of high image quality.
arXiv Detail & Related papers (2021-12-10T13:16:51Z) - Over-and-Under Complete Convolutional RNN for MRI Reconstruction [57.95363471940937]
Recent deep learning-based methods for MR image reconstruction usually leverage a generic auto-encoder architecture.
We propose an Over-and-Under Complete Convolu?tional Recurrent Neural Network (OUCR), which consists of an overcomplete and an undercomplete Convolutional Recurrent Neural Network(CRNN)
The proposed method achieves significant improvements over the compressed sensing and popular deep learning-based methods with less number of trainable parameters.
arXiv Detail & Related papers (2021-06-16T15:56:34Z) - NAS-DIP: Learning Deep Image Prior with Neural Architecture Search [65.79109790446257]
Recent work has shown that the structure of deep convolutional neural networks can be used as a structured image prior.
We propose to search for neural architectures that capture stronger image priors.
We search for an improved network by leveraging an existing neural architecture search algorithm.
arXiv Detail & Related papers (2020-08-26T17:59:36Z) - Iterative Network for Image Super-Resolution [69.07361550998318]
Single image super-resolution (SISR) has been greatly revitalized by the recent development of convolutional neural networks (CNN)
This paper provides a new insight on conventional SISR algorithm, and proposes a substantially different approach relying on the iterative optimization.
A novel iterative super-resolution network (ISRN) is proposed on top of the iterative optimization.
arXiv Detail & Related papers (2020-05-20T11:11:47Z) - Deep Adaptive Inference Networks for Single Image Super-Resolution [72.7304455761067]
Single image super-resolution (SISR) has witnessed tremendous progress in recent years owing to the deployment of deep convolutional neural networks (CNNs)
In this paper, we take a step forward to address this issue by leveraging the adaptive inference networks for deep SISR (AdaDSR)
Our AdaDSR involves an SISR model as backbone and a lightweight adapter module which takes image features and resource constraint as input and predicts a map of local network depth.
arXiv Detail & Related papers (2020-04-08T10:08:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.