DEFN: Dual-Encoder Fourier Group Harmonics Network for Three-Dimensional Indistinct-Boundary Object Segmentation
- URL: http://arxiv.org/abs/2311.00483v2
- Date: Wed, 19 Jun 2024 08:49:30 GMT
- Title: DEFN: Dual-Encoder Fourier Group Harmonics Network for Three-Dimensional Indistinct-Boundary Object Segmentation
- Authors: Xiaohua Jiang, Yihao Guo, Jian Huang, Yuting Wu, Meiyi Luo, Zhaoyang Xu, Qianni Zhang, Xingru Huang, Hong He, Shaowei Jiang, Jing Ye, Mang Xiao,
- Abstract summary: We introduce Defect Injection (SDi) to augment the representational diversity of challenging indistinct-boundary objects within training corpora.
Consequently, we propose the Dual-Encoder Fourier Group Harmonics Network (DEFN) to tailor incorporating noise, amplify detailed feature recognition, and bolster representation across diverse medical imaging scenarios.
- Score: 6.0920148653974255
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The precise spatial and quantitative delineation of indistinct-boundary medical objects is paramount for the accuracy of diagnostic protocols, efficacy of surgical interventions, and reliability of postoperative assessments. Despite their significance, the effective segmentation and instantaneous three-dimensional reconstruction are significantly impeded by the paucity of representative samples in available datasets and noise artifacts. To surmount these challenges, we introduced Stochastic Defect Injection (SDi) to augment the representational diversity of challenging indistinct-boundary objects within training corpora. Consequently, we propose the Dual-Encoder Fourier Group Harmonics Network (DEFN) to tailor noise filtration, amplify detailed feature recognition, and bolster representation across diverse medical imaging scenarios. By incorporating Dynamic Weight Composing (DWC) loss dynamically adjusts model's focus based on training progression, DEFN achieves SOTA performance on the OIMHS public dataset, showcasing effectiveness in indistinct boundary contexts. Source code for DEFN is available at: https://github.com/IMOP-lab/DEFN-pytorch.
Related papers
- Unlocking Potential Binders: Multimodal Pretraining DEL-Fusion for Denoising DNA-Encoded Libraries [51.72836644350993]
Multimodal Pretraining DEL-Fusion model (MPDF)
We develop pretraining tasks applying contrastive objectives between different compound representations and their text descriptions.
We propose a novel DEL-fusion framework that amalgamates compound information at the atomic, submolecular, and molecular levels.
arXiv Detail & Related papers (2024-09-07T17:32:21Z) - DiffSeg: A Segmentation Model for Skin Lesions Based on Diffusion Difference [2.9082809324784082]
We introduce DiffSeg, a segmentation model for skin lesions based on diffusion difference.
Its multi-output capability mimics doctors' annotation behavior, facilitating the visualization of segmentation result consistency and ambiguity.
We demonstrate the effectiveness of DiffSeg on the ISIC 2018 Challenge dataset, outperforming state-of-the-art U-Net-based methods.
arXiv Detail & Related papers (2024-04-25T09:57:52Z) - CycleINR: Cycle Implicit Neural Representation for Arbitrary-Scale Volumetric Super-Resolution of Medical Data [19.085329423308938]
CycleINR is a novel enhanced Implicit Neural Representation model for 3D medical data super-resolution.
We introduce a new metric, Slice-wise Noise Level Inconsistency (SNLI), to quantitatively assess inter-slice noise level inconsistency.
arXiv Detail & Related papers (2024-04-07T08:48:01Z) - DPMesh: Exploiting Diffusion Prior for Occluded Human Mesh Recovery [71.6345505427213]
DPMesh is an innovative framework for occluded human mesh recovery.
It capitalizes on the profound diffusion prior about object structure and spatial relationships embedded in a pre-trained text-to-image diffusion model.
arXiv Detail & Related papers (2024-04-01T18:59:13Z) - Fully Differentiable Correlation-driven 2D/3D Registration for X-ray to CT Image Fusion [3.868072865207522]
Image-based rigid 2D/3D registration is a critical technique for fluoroscopic guided surgical interventions.
We propose a novel fully differentiable correlation-driven network using a dual-branch CNN-transformer encoder.
A correlation-driven loss is proposed for low-frequency feature and high-frequency feature decomposition based on embedded information.
arXiv Detail & Related papers (2024-02-04T14:12:51Z) - ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic
Diffusion Models [69.9178140563928]
Colonoscopy analysis is essential for assisting clinical diagnosis and treatment.
The scarcity of annotated data limits the effectiveness and generalization of existing methods.
We propose an Adaptive Refinement Semantic Diffusion Model (ArSDM) to generate colonoscopy images that benefit the downstream tasks.
arXiv Detail & Related papers (2023-09-03T07:55:46Z) - Deep denoising autoencoder-based non-invasive blood flow detection for
arteriovenous fistula [10.030431512848239]
We propose an approach based on deep denoising autoencoders (DAEs) that perform dimensionality reduction and reconstruction tasks.
Our results demonstrate that the latent representation generated by the DAE surpasses expectations with an accuracy of 0.93.
The incorporation of noise-mixing and the utilization of a noise-to-clean scheme effectively enhance the discriminative capabilities of the latent representation.
arXiv Detail & Related papers (2023-06-12T04:46:01Z) - Diff-UNet: A Diffusion Embedded Network for Volumetric Segmentation [41.608617301275935]
We propose a novel end-to-end framework, called Diff-UNet, for medical volumetric segmentation.
Our approach integrates the diffusion model into a standard U-shaped architecture to extract semantic information from the input volume effectively.
We evaluate our method on three datasets, including multimodal brain tumors in MRI, liver tumors, and multi-organ CT volumes.
arXiv Detail & Related papers (2023-03-18T04:06:18Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Fuzzy Attention Neural Network to Tackle Discontinuity in Airway
Segmentation [67.19443246236048]
Airway segmentation is crucial for the examination, diagnosis, and prognosis of lung diseases.
Some small-sized airway branches (e.g., bronchus and terminaloles) significantly aggravate the difficulty of automatic segmentation.
This paper presents an efficient method for airway segmentation, comprising a novel fuzzy attention neural network and a comprehensive loss function.
arXiv Detail & Related papers (2022-09-05T16:38:13Z) - Unsupervised Instance Segmentation in Microscopy Images via Panoptic
Domain Adaptation and Task Re-weighting [86.33696045574692]
We propose a Cycle Consistency Panoptic Domain Adaptive Mask R-CNN (CyC-PDAM) architecture for unsupervised nuclei segmentation in histopathology images.
We first propose a nuclei inpainting mechanism to remove the auxiliary generated objects in the synthesized images.
Secondly, a semantic branch with a domain discriminator is designed to achieve panoptic-level domain adaptation.
arXiv Detail & Related papers (2020-05-05T11:08:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.