Boosting Summarization with Normalizing Flows and Aggressive Training
- URL: http://arxiv.org/abs/2311.00588v1
- Date: Wed, 1 Nov 2023 15:33:38 GMT
- Title: Boosting Summarization with Normalizing Flows and Aggressive Training
- Authors: Yu Yang, Xiaotong Shen
- Abstract summary: FlowSUM is a normalizing flows-based variational encoder-decoder framework for Transformer-based summarization.
Our approach tackles two primary challenges in variational summarization: insufficient semantic information in latent representations and posterior collapse during training.
- Score: 6.6242828769801285
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents FlowSUM, a normalizing flows-based variational
encoder-decoder framework for Transformer-based summarization. Our approach
tackles two primary challenges in variational summarization: insufficient
semantic information in latent representations and posterior collapse during
training. To address these challenges, we employ normalizing flows to enable
flexible latent posterior modeling, and we propose a controlled alternate
aggressive training (CAAT) strategy with an improved gate mechanism.
Experimental results show that FlowSUM significantly enhances the quality of
generated summaries and unleashes the potential for knowledge distillation with
minimal impact on inference time. Furthermore, we investigate the issue of
posterior collapse in normalizing flows and analyze how the summary quality is
affected by the training strategy, gate initialization, and the type and number
of normalizing flows used, offering valuable insights for future research.
Related papers
- In-Context Linear Regression Demystified: Training Dynamics and Mechanistic Interpretability of Multi-Head Softmax Attention [52.159541540613915]
We study how multi-head softmax attention models are trained to perform in-context learning on linear data.
Our results reveal that in-context learning ability emerges from the trained transformer as an aggregated effect of its architecture and the underlying data distribution.
arXiv Detail & Related papers (2025-03-17T02:00:49Z) - Dynamic Loss-Based Sample Reweighting for Improved Large Language Model Pretraining [55.262510814326035]
Existing reweighting strategies primarily focus on group-level data importance.
We introduce novel algorithms for dynamic, instance-level data reweighting.
Our framework allows us to devise reweighting strategies deprioritizing redundant or uninformative data.
arXiv Detail & Related papers (2025-02-10T17:57:15Z) - Enhancing Robustness of Vision-Language Models through Orthogonality Learning and Self-Regularization [77.62516752323207]
We introduce an orthogonal fine-tuning method for efficiently fine-tuning pretrained weights and enabling enhanced robustness and generalization.
A self-regularization strategy is further exploited to maintain the stability in terms of zero-shot generalization of VLMs, dubbed OrthSR.
For the first time, we revisit the CLIP and CoOp with our method to effectively improve the model on few-shot image classficiation scenario.
arXiv Detail & Related papers (2024-07-11T10:35:53Z) - Understanding Optimal Feature Transfer via a Fine-Grained Bias-Variance Analysis [10.79615566320291]
We explore transfer learning with the goal of optimizing downstream performance.
We introduce a simple linear model that takes as input an arbitrary pretrained feature.
We identify the optimal pretrained representation by minimizing the downstream risk averaged over an ensemble of downstream tasks.
arXiv Detail & Related papers (2024-04-18T19:33:55Z) - Rethinking Model Re-Basin and Linear Mode Connectivity [1.1510009152620668]
We decompose re-normalization into rescaling and reshift, uncovering that rescaling plays a crucial role in re-normalization.
We identify that the merged model suffers from the issue of activation collapse and magnitude collapse.
We propose a new perspective to unify the re-basin and pruning, under which a lightweight yet effective post-pruning technique is derived.
arXiv Detail & Related papers (2024-02-05T17:06:26Z) - Data Attribution for Diffusion Models: Timestep-induced Bias in Influence Estimation [53.27596811146316]
Diffusion models operate over a sequence of timesteps instead of instantaneous input-output relationships in previous contexts.
We present Diffusion-TracIn that incorporates this temporal dynamics and observe that samples' loss gradient norms are highly dependent on timestep.
We introduce Diffusion-ReTrac as a re-normalized adaptation that enables the retrieval of training samples more targeted to the test sample of interest.
arXiv Detail & Related papers (2024-01-17T07:58:18Z) - Out of the Ordinary: Spectrally Adapting Regression for Covariate Shift [12.770658031721435]
We propose a method for adapting the weights of the last layer of a pre-trained neural regression model to perform better on input data originating from a different distribution.
We demonstrate how this lightweight spectral adaptation procedure can improve out-of-distribution performance for synthetic and real-world datasets.
arXiv Detail & Related papers (2023-12-29T04:15:58Z) - A Conditioned Unsupervised Regression Framework Attuned to the Dynamic Nature of Data Streams [0.0]
This paper presents an optimal strategy for streaming contexts with limited labeled data, introducing an adaptive technique for unsupervised regression.
The proposed method leverages a sparse set of initial labels and introduces an innovative drift detection mechanism.
To enhance adaptability, we integrate the ADWIN (ADaptive WINdowing) algorithm with error generalization based on Root Mean Square Error (RMSE)
arXiv Detail & Related papers (2023-12-12T19:23:54Z) - Guided Flows for Generative Modeling and Decision Making [55.42634941614435]
We show that Guided Flows significantly improves the sample quality in conditional image generation and zero-shot text synthesis-to-speech.
Notably, we are first to apply flow models for plan generation in the offline reinforcement learning setting ax speedup in compared to diffusion models.
arXiv Detail & Related papers (2023-11-22T15:07:59Z) - Free-form Flows: Make Any Architecture a Normalizing Flow [8.163244519983298]
We develop a training procedure that uses an efficient estimator for the gradient of the change of variables formula.
This enables any dimension-preserving neural network to serve as a generative model through maximum likelihood training.
We achieve excellent results in molecule generation benchmarks utilizing $E(n)$-equivariant networks.
arXiv Detail & Related papers (2023-10-25T13:23:08Z) - Diffusion Generative Flow Samplers: Improving learning signals through
partial trajectory optimization [87.21285093582446]
Diffusion Generative Flow Samplers (DGFS) is a sampling-based framework where the learning process can be tractably broken down into short partial trajectory segments.
Our method takes inspiration from the theory developed for generative flow networks (GFlowNets)
arXiv Detail & Related papers (2023-10-04T09:39:05Z) - Data Augmentation through Expert-guided Symmetry Detection to Improve
Performance in Offline Reinforcement Learning [0.0]
offline estimation of the dynamical model of a Markov Decision Process (MDP) is a non-trivial task.
Recent works showed that an expert-guided pipeline relying on Density Estimation methods effectively detects this structure in deterministic environments.
We show that the former results lead to a performance improvement when solving the learned MDP and then applying the optimized policy in the real environment.
arXiv Detail & Related papers (2021-12-18T14:32:32Z) - Regularizing Variational Autoencoder with Diversity and Uncertainty
Awareness [61.827054365139645]
Variational Autoencoder (VAE) approximates the posterior of latent variables based on amortized variational inference.
We propose an alternative model, DU-VAE, for learning a more Diverse and less Uncertain latent space.
arXiv Detail & Related papers (2021-10-24T07:58:13Z) - An Ode to an ODE [78.97367880223254]
We present a new paradigm for Neural ODE algorithms, called ODEtoODE, where time-dependent parameters of the main flow evolve according to a matrix flow on the group O(d)
This nested system of two flows provides stability and effectiveness of training and provably solves the gradient vanishing-explosion problem.
arXiv Detail & Related papers (2020-06-19T22:05:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.