Emotion Detection for Misinformation: A Review
- URL: http://arxiv.org/abs/2311.00671v1
- Date: Wed, 1 Nov 2023 17:21:09 GMT
- Title: Emotion Detection for Misinformation: A Review
- Authors: Zhiwei Liu, Tianlin Zhang, Kailai Yang, Paul Thompson, Zeping Yu,
Sophia Ananiadou
- Abstract summary: This article comprehensively reviews emotion-based methods for misinformation detection.
We provide an analysis of a range of misinformation detection methods that employ a variety of emotion, sentiment and stance-based features.
We discuss a number of ongoing challenges in emotion-based misinformation detection based on large language models.
- Score: 23.546901725789645
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the advent of social media, an increasing number of netizens are sharing
and reading posts and news online. However, the huge volumes of misinformation
(e.g., fake news and rumors) that flood the internet can adversely affect
people's lives, and have resulted in the emergence of rumor and fake news
detection as a hot research topic. The emotions and sentiments of netizens, as
expressed in social media posts and news, constitute important factors that can
help to distinguish fake news from genuine news and to understand the spread of
rumors. This article comprehensively reviews emotion-based methods for
misinformation detection. We begin by explaining the strong links between
emotions and misinformation. We subsequently provide a detailed analysis of a
range of misinformation detection methods that employ a variety of emotion,
sentiment and stance-based features, and describe their strengths and
weaknesses. Finally, we discuss a number of ongoing challenges in emotion-based
misinformation detection based on large language models and suggest future
research directions, including data collection (multi-platform, multilingual),
annotation, benchmark, multimodality, and interpretability.
Related papers
- Bridging Cognition and Emotion: Empathy-Driven Multimodal Misinformation Detection [56.644686934050576]
Social media has become a major conduit for information dissemination, yet it also facilitates the rapid spread of misinformation.
Traditional misinformation detection methods primarily focus on surface-level features, overlooking the crucial roles of human empathy in the propagation process.
We propose the Dual-Aspect Empathy Framework (DAE), which integrates cognitive and emotional empathy to analyze misinformation from both the creator and reader perspectives.
arXiv Detail & Related papers (2025-04-24T07:48:26Z) - News and Misinformation Consumption in Europe: A Longitudinal
Cross-Country Perspective [49.1574468325115]
This study investigated information consumption in four European countries.
It analyzed three years of Twitter activity from news outlet accounts in France, Germany, Italy, and the UK.
Results indicate that reliable sources dominate the information landscape, although unreliable content is still present across all countries.
arXiv Detail & Related papers (2023-11-09T16:22:10Z) - Adapting Fake News Detection to the Era of Large Language Models [48.5847914481222]
We study the interplay between machine-(paraphrased) real news, machine-generated fake news, human-written fake news, and human-written real news.
Our experiments reveal an interesting pattern that detectors trained exclusively on human-written articles can indeed perform well at detecting machine-generated fake news, but not vice versa.
arXiv Detail & Related papers (2023-11-02T08:39:45Z) - Fake News Detection and Behavioral Analysis: Case of COVID-19 [0.22940141855172028]
"Infodemic" due to spread of fake news regarding the pandemic has been a global issue.
Readers could mistake fake news for real news, and consequently have less access to authentic information.
It is challenging to accurately identify fake news data in social media posts.
arXiv Detail & Related papers (2023-05-25T13:42:08Z) - Unveiling the Hidden Agenda: Biases in News Reporting and Consumption [59.55900146668931]
We build a six-year dataset on the Italian vaccine debate and adopt a Bayesian latent space model to identify narrative and selection biases.
We found a nonlinear relationship between biases and engagement, with higher engagement for extreme positions.
Analysis of news consumption on Twitter reveals common audiences among news outlets with similar ideological positions.
arXiv Detail & Related papers (2023-01-14T18:58:42Z) - Nothing Stands Alone: Relational Fake News Detection with Hypergraph
Neural Networks [49.29141811578359]
We propose to leverage a hypergraph to represent group-wise interaction among news, while focusing on important news relations with its dual-level attention mechanism.
Our approach yields remarkable performance and maintains the high performance even with a small subset of labeled news data.
arXiv Detail & Related papers (2022-12-24T00:19:32Z) - Multiverse: Multilingual Evidence for Fake News Detection [71.51905606492376]
Multiverse is a new feature based on multilingual evidence that can be used for fake news detection.
The hypothesis of the usage of cross-lingual evidence as a feature for fake news detection is confirmed.
arXiv Detail & Related papers (2022-11-25T18:24:17Z) - A Review of Web Infodemic Analysis and Detection Trends across
Multi-modalities using Deep Neural Networks [3.42658286826597]
Fake news detection is one of the most analyzed and prominent areas of research.
Facebook, Reddit, WhatsApp, YouTube, and other social applications are gradually gaining attention in this emerging field.
This review primarily deals with multi-modal fake news detection techniques that include images, videos, and their combinations with text.
arXiv Detail & Related papers (2021-11-23T16:02:28Z) - A Study of Fake News Reading and Annotating in Social Media Context [1.0499611180329804]
We present an eye-tracking study, in which we let 44 lay participants to casually read through a social media feed containing posts with news articles, some of which were fake.
In a second run, we asked the participants to decide on the truthfulness of these articles.
We also describe a follow-up qualitative study with a similar scenario but this time with 7 expert fake news annotators.
arXiv Detail & Related papers (2021-09-26T08:11:17Z) - Stance Detection with BERT Embeddings for Credibility Analysis of
Information on Social Media [1.7616042687330642]
We propose a model for detecting fake news using stance as one of the features along with the content of the article.
Our work interprets the content with automatic feature extraction and the relevance of the text pieces.
The experiment conducted on the real-world dataset indicates that our model outperforms the previous work and enables fake news detection with an accuracy of 95.32%.
arXiv Detail & Related papers (2021-05-21T10:46:43Z) - News Sentiment Analysis [0.0]
This paper presents a lexicon-based approach for sentiment analysis of news articles.
The experiments have been performed on BBC news data set, which expresses the applicability and validation of the adopted approach.
arXiv Detail & Related papers (2020-07-05T05:15:35Z) - Mining Disinformation and Fake News: Concepts, Methods, and Recent
Advancements [55.33496599723126]
disinformation including fake news has become a global phenomenon due to its explosive growth.
Despite the recent progress in detecting disinformation and fake news, it is still non-trivial due to its complexity, diversity, multi-modality, and costs of fact-checking or annotation.
arXiv Detail & Related papers (2020-01-02T21:01:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.