Neural Field Dynamics Model for Granular Object Piles Manipulation
- URL: http://arxiv.org/abs/2311.00802v1
- Date: Wed, 1 Nov 2023 19:36:56 GMT
- Title: Neural Field Dynamics Model for Granular Object Piles Manipulation
- Authors: Shangjie Xue, Shuo Cheng, Pujith Kachana and Danfei Xu
- Abstract summary: We present a learning-based dynamics model for granular material manipulation.
Inspired by the Eulerian approach commonly used in fluid dynamics, our method adopts a fully convolutional neural network.
- Score: 12.452569633458037
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a learning-based dynamics model for granular material
manipulation. Inspired by the Eulerian approach commonly used in fluid
dynamics, our method adopts a fully convolutional neural network that operates
on a density field-based representation of object piles and pushers, allowing
it to exploit the spatial locality of inter-object interactions as well as the
translation equivariance through convolution operations. Furthermore, our
differentiable action rendering module makes the model fully differentiable and
can be directly integrated with a gradient-based trajectory optimization
algorithm. We evaluate our model with a wide array of piles manipulation tasks
both in simulation and real-world experiments and demonstrate that it
significantly exceeds existing latent or particle-based methods in both
accuracy and computation efficiency, and exhibits zero-shot generalization
capabilities across various environments and tasks.
Related papers
- You are out of context! [0.0]
New data can act as forces stretching, compressing, or twisting the geometric relationships learned by a model.
We propose a novel drift detection methodology for machine learning (ML) models based on the concept of ''deformation'' in the vector space representation of data.
arXiv Detail & Related papers (2024-11-04T10:17:43Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
Diffusion-based generative models use differential equations to establish a smooth connection between a complex data distribution and a tractable prior distribution.
In this paper, we identify several intriguing trajectory properties in the ODE-based sampling process of diffusion models.
arXiv Detail & Related papers (2024-05-18T15:59:41Z) - Dynamic Kernel-Based Adaptive Spatial Aggregation for Learned Image
Compression [63.56922682378755]
We focus on extending spatial aggregation capability and propose a dynamic kernel-based transform coding.
The proposed adaptive aggregation generates kernel offsets to capture valid information in the content-conditioned range to help transform.
Experimental results demonstrate that our method achieves superior rate-distortion performance on three benchmarks compared to the state-of-the-art learning-based methods.
arXiv Detail & Related papers (2023-08-17T01:34:51Z) - Dynamic-Resolution Model Learning for Object Pile Manipulation [33.05246884209322]
We investigate how to learn dynamic and adaptive representations at different levels of abstraction to achieve the optimal trade-off between efficiency and effectiveness.
Specifically, we construct dynamic-resolution particle representations of the environment and learn a unified dynamics model using graph neural networks (GNNs)
We show that our method achieves significantly better performance than state-of-the-art fixed-resolution baselines at the gathering, sorting, and redistribution of granular object piles.
arXiv Detail & Related papers (2023-06-29T05:51:44Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
Deep generative models have demonstrated successful applications in learning non-linear data distributions through a number of latent variables.
The nonlinearity of the generator implies that the latent space shows an unsatisfactory projection of the data space, which results in poor representation learning.
We show that geodesics and accurate computation can substantially improve the performance of deep generative models.
arXiv Detail & Related papers (2023-04-03T13:13:19Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
It remains unclear theoretically and empirically how latent variable models may facilitate learning, planning, and exploration to improve the sample efficiency of model-based reinforcement learning.
We provide a representation view of the latent variable models for state-action value functions, which allows both tractable variational learning algorithm and effective implementation of the optimism/pessimism principle.
In particular, we propose a computationally efficient planning algorithm with UCB exploration by incorporating kernel embeddings of latent variable models.
arXiv Detail & Related papers (2022-12-17T00:26:31Z) - Learning Interacting Dynamical Systems with Latent Gaussian Process ODEs [13.436770170612295]
We study for the first time uncertainty-aware modeling of continuous-time dynamics of interacting objects.
Our model infers both independent dynamics and their interactions with reliable uncertainty estimates.
arXiv Detail & Related papers (2022-05-24T08:36:25Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
We use machine learning techniques to learn a differentiable dynamics model of the system from data.
We show that a neural network can model highly nonlinear behaviors accurately for large time horizons.
In our hardware experiments, we demonstrate that our learned model can represent complex dynamics for both the Spot and Radio-controlled (RC) car.
arXiv Detail & Related papers (2022-04-09T22:07:34Z) - Efficient Differentiable Simulation of Articulated Bodies [89.64118042429287]
We present a method for efficient differentiable simulation of articulated bodies.
This enables integration of articulated body dynamics into deep learning frameworks.
We show that reinforcement learning with articulated systems can be accelerated using gradients provided by our method.
arXiv Detail & Related papers (2021-09-16T04:48:13Z) - A data-driven peridynamic continuum model for upscaling molecular
dynamics [3.1196544696082613]
We propose a learning framework to extract, from molecular dynamics data, an optimal Linear Peridynamic Solid model.
We provide sufficient well-posedness conditions for discretized LPS models with sign-changing influence functions.
This framework guarantees that the resulting model is mathematically well-posed, physically consistent, and that it generalizes well to settings that are different from the ones used during training.
arXiv Detail & Related papers (2021-08-04T07:07:47Z) - Scalable nonparametric Bayesian learning for heterogeneous and dynamic
velocity fields [8.744017403796406]
We develop a model for learning heterogeneous and dynamic patterns of velocity field data.
We show the effectiveness of our techniques to the NGSIM dataset of complex multi-vehicle interactions.
arXiv Detail & Related papers (2021-02-15T17:45:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.