論文の概要: SmoothHess: ReLU Network Feature Interactions via Stein's Lemma
- arxiv url: http://arxiv.org/abs/2311.00858v1
- Date: Wed, 1 Nov 2023 21:24:37 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-03 15:43:46.195537
- Title: SmoothHess: ReLU Network Feature Interactions via Stein's Lemma
- Title(参考訳): smoothhess: steinの補題によるreluネットワーク機能インタラクション
- Authors: Max Torop, Aria Masoomi, Davin Hill, Kivanc Kose, Stratis Ioannidis,
Jennifer Dy
- Abstract要約: スムースヘス(SmoothHess)は、スタインの補題を用いて二階相互作用を推定する手法である。
我々は,SmoothHessのベンチマークデータセットと実世界の医用スピロメトリデータセット上でのインタラクションをキャプチャする優れた能力を検証した。
- 参考スコア(独自算出の注目度): 10.33762546937141
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Several recent methods for interpretability model feature interactions by
looking at the Hessian of a neural network. This poses a challenge for ReLU
networks, which are piecewise-linear and thus have a zero Hessian almost
everywhere. We propose SmoothHess, a method of estimating second-order
interactions through Stein's Lemma. In particular, we estimate the Hessian of
the network convolved with a Gaussian through an efficient sampling algorithm,
requiring only network gradient calls. SmoothHess is applied post-hoc, requires
no modifications to the ReLU network architecture, and the extent of smoothing
can be controlled explicitly. We provide a non-asymptotic bound on the sample
complexity of our estimation procedure. We validate the superior ability of
SmoothHess to capture interactions on benchmark datasets and a real-world
medical spirometry dataset.
- Abstract(参考訳): ニューラルネットのヘシアン(Hessian)に着目して特徴的相互作用を解釈する最近の方法
これはReLUネットワークにとって挑戦であり、それは断片的に線形であり、したがってほぼ至る所でゼロのヘシアンを持つ。
スタインの補題を用いて二階相互作用を推定する手法である smoothhess を提案する。
特に,gaussianと畳んだネットワークのヘッシアンを効率的なサンプリングアルゴリズムで推定し,ネットワーク勾配呼び出しのみを必要とする。
smoothhessは、hoc後に適用され、reluネットワークアーキテクチャを変更する必要はなく、スムージングの程度を明示的に制御できる。
推定手順のサンプルの複雑さに非漸近的境界を与える。
ベンチマークデータセットと現実世界の医療スパイロメトリデータセットのインタラクションをキャプチャするsmoothhessの優れた能力を検証する。
関連論文リスト
- GLinSAT: The General Linear Satisfiability Neural Network Layer By Accelerated Gradient Descent [12.409030267572243]
まず、エントロピー規則化線形計画問題として、ニューラルネットワーク出力予測問題を再構成する。
数値的性能向上を伴う高速化勾配降下アルゴリズムに基づいて,その問題を解決するため,アーキテクチャGLinSATを提案する。
これは、すべての操作が微分可能で行列分解自由な、最初の一般線形満足層である。
論文 参考訳(メタデータ) (2024-09-26T03:12:53Z) - Implicit Bias of Gradient Descent for Two-layer ReLU and Leaky ReLU
Networks on Nearly-orthogonal Data [66.1211659120882]
好ましい性質を持つ解に対する暗黙の偏見は、勾配に基づく最適化によって訓練されたニューラルネットワークがうまく一般化できる重要な理由であると考えられている。
勾配流の暗黙バイアスは、均質ニューラルネットワーク(ReLUやリークReLUネットワークを含む)に対して広く研究されているが、勾配降下の暗黙バイアスは現在、滑らかなニューラルネットワークに対してのみ理解されている。
論文 参考訳(メタデータ) (2023-10-29T08:47:48Z) - The Implicit Bias of Minima Stability in Multivariate Shallow ReLU
Networks [53.95175206863992]
本研究では,2次損失を持つ1層多変量ReLUネットワークをトレーニングする際に,勾配勾配勾配が収束する解のタイプについて検討する。
我々は、浅いReLUネットワークが普遍近似器であるにもかかわらず、安定した浅層ネットワークは存在しないことを証明した。
論文 参考訳(メタデータ) (2023-06-30T09:17:39Z) - AMS-Net: Adaptive Multiscale Sparse Neural Network with Interpretable
Basis Expansion for Multiphase Flow Problems [8.991619150027267]
本研究では、物理過程の学習に応用可能な適応スパース学習アルゴリズムを提案し、大きなスナップショット空間を与えられた解のスパース表現を得る。
基本関数の情報は損失関数に組み込まれており、複数の時間ステップにおけるダウンスケール縮小次数解と参照解との差を最小限に抑える。
複雑なアプリケーションにおける提案手法の有効性と解釈性を示すため, 2相多相流問題に対してより数値的な実験を行った。
論文 参考訳(メタデータ) (2022-07-24T13:12:43Z) - Push--Pull with Device Sampling [8.344476599818826]
複数のエージェントが協力して、基礎となる通信グラフを交換することで、ローカル関数の平均を最小化する分散最適化問題を考察する。
ネットワーク全体の勾配追跡と分散低減を併用したアルゴリズムを提案する。
理論解析により,局所目的関数が強凸である場合,アルゴリズムは線形に収束することを示した。
論文 参考訳(メタデータ) (2022-06-08T18:18:18Z) - Non-Gradient Manifold Neural Network [79.44066256794187]
ディープニューラルネットワーク(DNN)は通常、勾配降下による最適化に数千のイテレーションを要します。
非次最適化に基づく新しい多様体ニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2021-06-15T06:39:13Z) - Modeling the Nonsmoothness of Modern Neural Networks [35.93486244163653]
ピークの大きさの和(SMP)という特徴を用いて不滑らかさを定量化する。
この非平滑性機能は、ニューラルネットワークの回帰ベースのアプリケーションのためのフォレンジックツールとして利用される可能性があると考えます。
論文 参考訳(メタデータ) (2021-03-26T20:55:19Z) - Understanding Self-supervised Learning with Dual Deep Networks [74.92916579635336]
本稿では,2組の深層ReLUネットワークを用いたコントラスト型自己教師学習(SSL)手法を理解するための新しい枠組みを提案する。
種々の損失関数を持つSimCLRの各SGD更新において、各層の重みは共分散演算子によって更新されることを示す。
共分散演算子の役割と、そのようなプロセスでどのような特徴が学習されるかをさらに研究するために、我々は、階層的潜在木モデル(HLTM)を用いて、データ生成および増大過程をモデル化する。
論文 参考訳(メタデータ) (2020-10-01T17:51:49Z) - System Identification Through Lipschitz Regularized Deep Neural Networks [0.4297070083645048]
ニューラルネットワークを使って、データから支配方程式を学習します。
我々は、観測されたタイムスタンプデータから直接、ODEs $dotx(t) = f(t, x(t))$の右辺を再構築する。
論文 参考訳(メタデータ) (2020-09-07T17:52:51Z) - Neural Control Variates [71.42768823631918]
ニューラルネットワークの集合が、積分のよい近似を見つけるという課題に直面していることを示す。
理論的に最適な分散最小化損失関数を導出し、実際に安定したオンライントレーニングを行うための代替の複合損失を提案する。
具体的には、学習した光場近似が高次バウンスに十分な品質であることを示し、誤差補正を省略し、無視可能な可視バイアスのコストでノイズを劇的に低減できることを示した。
論文 参考訳(メタデータ) (2020-06-02T11:17:55Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
本稿では,ニューラルネットワークを用いた大規模AUCのための分散変数について検討する。
我々のモデルは通信ラウンドをはるかに少なくし、理論上はまだ多くの通信ラウンドを必要としています。
いくつかのデータセットに対する実験は、我々の理論の有効性を示し、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2020-05-05T18:08:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。