Role of Structural and Conformational Diversity for Machine Learning
Potentials
- URL: http://arxiv.org/abs/2311.00862v1
- Date: Mon, 30 Oct 2023 19:33:12 GMT
- Title: Role of Structural and Conformational Diversity for Machine Learning
Potentials
- Authors: Nikhil Shenoy, Prudencio Tossou, Emmanuel Noutahi, Hadrien Mary,
Dominique Beaini, Jiarui Ding
- Abstract summary: We investigate the relationship between data biases and model generalization in Quantum Mechanics.
Our results reveal nuanced patterns in generalization metrics.
These findings provide valuable insights and guidelines for QM data generation efforts.
- Score: 4.608732256350959
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the field of Machine Learning Interatomic Potentials (MLIPs),
understanding the intricate relationship between data biases, specifically
conformational and structural diversity, and model generalization is critical
in improving the quality of Quantum Mechanics (QM) data generation efforts. We
investigate these dynamics through two distinct experiments: a fixed budget
one, where the dataset size remains constant, and a fixed molecular set one,
which focuses on fixed structural diversity while varying conformational
diversity. Our results reveal nuanced patterns in generalization metrics.
Notably, for optimal structural and conformational generalization, a careful
balance between structural and conformational diversity is required, but
existing QM datasets do not meet that trade-off. Additionally, our results
highlight the limitation of the MLIP models at generalizing beyond their
training distribution, emphasizing the importance of defining applicability
domain during model deployment. These findings provide valuable insights and
guidelines for QM data generation efforts.
Related papers
- Physical Consistency Bridges Heterogeneous Data in Molecular Multi-Task Learning [79.75718786477638]
We exploit the specialty of molecular tasks that there are physical laws connecting them, and design consistency training approaches.
We demonstrate that the more accurate energy data can improve the accuracy of structure prediction.
We also find that consistency training can directly leverage force and off-equilibrium structure data to improve structure prediction.
arXiv Detail & Related papers (2024-10-14T03:11:33Z) - Differentiation and Specialization of Attention Heads via the Refined Local Learning Coefficient [0.49478969093606673]
We introduce refined variants of the Local Learning Coefficient (LLC), a measure of model complexity grounded in singular learning theory.
We study the development of internal structure in transformer language models during training.
arXiv Detail & Related papers (2024-10-03T20:51:02Z) - Learning Divergence Fields for Shift-Robust Graph Representations [73.11818515795761]
In this work, we propose a geometric diffusion model with learnable divergence fields for the challenging problem with interdependent data.
We derive a new learning objective through causal inference, which can guide the model to learn generalizable patterns of interdependence that are insensitive across domains.
arXiv Detail & Related papers (2024-06-07T14:29:21Z) - GenBench: A Benchmarking Suite for Systematic Evaluation of Genomic Foundation Models [56.63218531256961]
We introduce GenBench, a benchmarking suite specifically tailored for evaluating the efficacy of Genomic Foundation Models.
GenBench offers a modular and expandable framework that encapsulates a variety of state-of-the-art methodologies.
We provide a nuanced analysis of the interplay between model architecture and dataset characteristics on task-specific performance.
arXiv Detail & Related papers (2024-06-01T08:01:05Z) - DA-VEGAN: Differentiably Augmenting VAE-GAN for microstructure
reconstruction from extremely small data sets [110.60233593474796]
DA-VEGAN is a model with two central innovations.
A $beta$-variational autoencoder is incorporated into a hybrid GAN architecture.
A custom differentiable data augmentation scheme is developed specifically for this architecture.
arXiv Detail & Related papers (2023-02-17T08:49:09Z) - DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained
Diffusion [66.21290235237808]
We introduce an energy constrained diffusion model which encodes a batch of instances from a dataset into evolutionary states.
We provide rigorous theory that implies closed-form optimal estimates for the pairwise diffusion strength among arbitrary instance pairs.
Experiments highlight the wide applicability of our model as a general-purpose encoder backbone with superior performance in various tasks.
arXiv Detail & Related papers (2023-01-23T15:18:54Z) - Dynamic Latent Separation for Deep Learning [67.62190501599176]
A core problem in machine learning is to learn expressive latent variables for model prediction on complex data.
Here, we develop an approach that improves expressiveness, provides partial interpretation, and is not restricted to specific applications.
arXiv Detail & Related papers (2022-10-07T17:56:53Z) - Evolution TANN and the discovery of the internal variables and evolution
equations in solid mechanics [0.0]
We propose a new approach which allows, for the first time, to decouple the material representation from the incremental formulation.
Inspired by the Thermodynamics-based Artificial Neural Networks (TANN) and the theory of the internal variables, the evolution TANN (eTANN) are continuous-time.
Key feature of the proposed approach is the discovery of the evolution equations of the internal variables in the form of ordinary differential equations.
arXiv Detail & Related papers (2022-09-27T09:25:55Z) - Scalable Gaussian Processes for Data-Driven Design using Big Data with
Categorical Factors [14.337297795182181]
Gaussian processes (GP) have difficulties in accommodating big datasets, categorical inputs, and multiple responses.
We propose a GP model that utilizes latent variables and functions obtained through variational inference to address the aforementioned challenges simultaneously.
Our approach is demonstrated for machine learning of ternary oxide materials and topology optimization of a multiscale compliant mechanism.
arXiv Detail & Related papers (2021-06-26T02:17:23Z) - Learning Structured Latent Factors from Dependent Data:A Generative
Model Framework from Information-Theoretic Perspective [18.88255368184596]
We present a novel framework for learning generative models with various underlying structures in the latent space.
Our model provides a principled approach to learn a set of semantically meaningful latent factors that reflect various types of desired structures.
arXiv Detail & Related papers (2020-07-21T06:59:29Z) - Data-Driven Topology Optimization with Multiclass Microstructures using
Latent Variable Gaussian Process [18.17435834037483]
We develop a multi-response latent-variable Gaussian process (LVGP) model for the microstructure libraries of metamaterials.
The MR-LVGP model embeds the mixed variables into a continuous design space based on their collective effects on the responses.
We show that considering multiclass microstructures can lead to improved performance due to the consistent load-transfer paths for micro- and macro-structures.
arXiv Detail & Related papers (2020-06-27T03:55:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.