Differentiation and Specialization of Attention Heads via the Refined Local Learning Coefficient
- URL: http://arxiv.org/abs/2410.02984v1
- Date: Thu, 3 Oct 2024 20:51:02 GMT
- Title: Differentiation and Specialization of Attention Heads via the Refined Local Learning Coefficient
- Authors: George Wang, Jesse Hoogland, Stan van Wingerden, Zach Furman, Daniel Murfet,
- Abstract summary: We introduce refined variants of the Local Learning Coefficient (LLC), a measure of model complexity grounded in singular learning theory.
We study the development of internal structure in transformer language models during training.
- Score: 0.49478969093606673
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce refined variants of the Local Learning Coefficient (LLC), a measure of model complexity grounded in singular learning theory, to study the development of internal structure in transformer language models during training. By applying these \textit{refined LLCs} (rLLCs) to individual components of a two-layer attention-only transformer, we gain novel insights into the progressive differentiation and specialization of attention heads. Our methodology reveals how attention heads differentiate into distinct functional roles over the course of training, analyzes the types of data these heads specialize to process, and discovers a previously unidentified multigram circuit. These findings demonstrate that rLLCs provide a principled, quantitative toolkit for \textit{developmental interpretability}, which aims to understand models through their evolution across the learning process. More broadly, this work takes a step towards establishing the correspondence between data distributional structure, geometric properties of the loss landscape, learning dynamics, and emergent computational structures in neural networks.
Related papers
- Deep Learning Through A Telescoping Lens: A Simple Model Provides Empirical Insights On Grokking, Gradient Boosting & Beyond [61.18736646013446]
In pursuit of a deeper understanding of its surprising behaviors, we investigate the utility of a simple yet accurate model of a trained neural network.
Across three case studies, we illustrate how it can be applied to derive new empirical insights on a diverse range of prominent phenomena.
arXiv Detail & Related papers (2024-10-31T22:54:34Z) - Interpreting token compositionality in LLMs: A robustness analysis [10.777646083061395]
Constituent-Aware Pooling (CAP) is a methodology designed to analyse how large language models process linguistic structures.
CAP intervenes in model activations through constituent-based pooling at various model levels.
arXiv Detail & Related papers (2024-10-16T18:10:50Z) - A Percolation Model of Emergence: Analyzing Transformers Trained on a Formal Language [15.929767234646631]
Increase in data, size, or compute can lead to sudden learning of specific capabilities by a neural network.
"emergence" is a phenomenon often called "emergence"
arXiv Detail & Related papers (2024-08-22T17:44:22Z) - Examining Changes in Internal Representations of Continual Learning Models Through Tensor Decomposition [5.01338577379149]
Continual learning (CL) has spurred the development of several methods aimed at consolidating previous knowledge across sequential learning.
We propose a novel representation-based evaluation framework for CL models.
arXiv Detail & Related papers (2024-05-06T07:52:44Z) - The mechanistic basis of data dependence and abrupt learning in an
in-context classification task [0.3626013617212666]
We show that specific distributional properties inherent in language control the trade-off or simultaneous appearance of two forms of learning.
In-context learning is driven by the abrupt emergence of an induction head, which subsequently competes with in-weights learning.
We propose that the sharp transitions in attention-based networks arise due to a specific chain of multi-layer operations necessary to achieve ICL.
arXiv Detail & Related papers (2023-12-03T20:53:41Z) - Harmonizing Feature Attributions Across Deep Learning Architectures:
Enhancing Interpretability and Consistency [2.2237337682863125]
This study examines the generalization of feature attributions across various deep learning architectures.
We aim to develop a more coherent and optimistic understanding of feature attributions.
Our findings highlight the potential for harmonized feature attribution methods to improve interpretability and foster trust in machine learning applications.
arXiv Detail & Related papers (2023-07-05T09:46:41Z) - On the Joint Interaction of Models, Data, and Features [82.60073661644435]
We introduce a new tool, the interaction tensor, for empirically analyzing the interaction between data and model through features.
Based on these observations, we propose a conceptual framework for feature learning.
Under this framework, the expected accuracy for a single hypothesis and agreement for a pair of hypotheses can both be derived in closed-form.
arXiv Detail & Related papers (2023-06-07T21:35:26Z) - Dynamic Latent Separation for Deep Learning [67.62190501599176]
A core problem in machine learning is to learn expressive latent variables for model prediction on complex data.
Here, we develop an approach that improves expressiveness, provides partial interpretation, and is not restricted to specific applications.
arXiv Detail & Related papers (2022-10-07T17:56:53Z) - The Geometry of Self-supervised Learning Models and its Impact on
Transfer Learning [62.601681746034956]
Self-supervised learning (SSL) has emerged as a desirable paradigm in computer vision.
We propose a data-driven geometric strategy to analyze different SSL models using local neighborhoods in the feature space induced by each.
arXiv Detail & Related papers (2022-09-18T18:15:38Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Structure-Aware Feature Generation for Zero-Shot Learning [108.76968151682621]
We introduce a novel structure-aware feature generation scheme, termed as SA-GAN, to account for the topological structure in learning both the latent space and the generative networks.
Our method significantly enhances the generalization capability on unseen-classes and consequently improve the classification performance.
arXiv Detail & Related papers (2021-08-16T11:52:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.