Redefining Contributions: Shapley-Driven Federated Learning
- URL: http://arxiv.org/abs/2406.00569v1
- Date: Sat, 1 Jun 2024 22:40:31 GMT
- Title: Redefining Contributions: Shapley-Driven Federated Learning
- Authors: Nurbek Tastan, Samar Fares, Toluwani Aremu, Samuel Horvath, Karthik Nandakumar,
- Abstract summary: Federated learning (FL) has emerged as a pivotal approach in machine learning.
It is challenging to ensure global model convergence when participants do not contribute equally and/or honestly.
This paper proposes a novel contribution assessment method called ShapFed for fine-grained evaluation of participant contributions in FL.
- Score: 3.9539878659683363
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Federated learning (FL) has emerged as a pivotal approach in machine learning, enabling multiple participants to collaboratively train a global model without sharing raw data. While FL finds applications in various domains such as healthcare and finance, it is challenging to ensure global model convergence when participants do not contribute equally and/or honestly. To overcome this challenge, principled mechanisms are required to evaluate the contributions made by individual participants in the FL setting. Existing solutions for contribution assessment rely on general accuracy evaluation, often failing to capture nuanced dynamics and class-specific influences. This paper proposes a novel contribution assessment method called ShapFed for fine-grained evaluation of participant contributions in FL. Our approach uses Shapley values from cooperative game theory to provide a granular understanding of class-specific influences. Based on ShapFed, we introduce a weighted aggregation method called ShapFed-WA, which outperforms conventional federated averaging, especially in class-imbalanced scenarios. Personalizing participant updates based on their contributions further enhances collaborative fairness by delivering differentiated models commensurate with the participant contributions. Experiments on CIFAR-10, Chest X-Ray, and Fed-ISIC2019 datasets demonstrate the effectiveness of our approach in improving utility, efficiency, and fairness in FL systems. The code can be found at https://github.com/tnurbek/shapfed.
Related papers
- Interaction-Aware Gaussian Weighting for Clustered Federated Learning [58.92159838586751]
Federated Learning (FL) emerged as a decentralized paradigm to train models while preserving privacy.
We propose a novel clustered FL method, FedGWC (Federated Gaussian Weighting Clustering), which groups clients based on their data distribution.
Our experiments on benchmark datasets show that FedGWC outperforms existing FL algorithms in cluster quality and classification accuracy.
arXiv Detail & Related papers (2025-02-05T16:33:36Z) - Over-the-Air Fair Federated Learning via Multi-Objective Optimization [52.295563400314094]
We propose an over-the-air fair federated learning algorithm (OTA-FFL) to train fair FL models.
Experiments demonstrate the superiority of OTA-FFL in achieving fairness and robust performance.
arXiv Detail & Related papers (2025-01-06T21:16:51Z) - DPVS-Shapley:Faster and Universal Contribution Evaluation Component in Federated Learning [1.740992908651449]
We introduce a component called Dynamic Pruning Validation Set Shapley (DPVS-Shapley)
This method accelerates the contribution assessment process by dynamically pruning the original dataset without compromising the evaluation's accuracy.
arXiv Detail & Related papers (2024-10-19T13:01:44Z) - Contribution Evaluation in Federated Learning: Examining Current
Approaches [1.3688201404977818]
In Federated Learning, clients with private and potentially heterogeneous data and compute resources come together to train a common model without raw data ever leaving their locale.
The Evaluation Contribution (CE) problem is Quantitatively evaluating the worth of these contributions is termed the Evaluation Contribution (CE) problem.
We benchmark some of the most promising state-of-the-art approaches, along with a new one we introduce, on MNIST and CIFAR-10, to showcase their differences.
arXiv Detail & Related papers (2023-11-16T12:32:44Z) - Dynamic Fair Federated Learning Based on Reinforcement Learning [19.033986978896074]
Federated learning enables a collaborative training and optimization of global models among a group of devices without sharing local data samples.
We propose a dynamic q fairness federated learning algorithm with reinforcement learning, called DQFFL.
Our DQFFL outperforms the state-of-the-art methods in terms of overall performance, fairness and convergence speed.
arXiv Detail & Related papers (2023-11-02T03:05:40Z) - Integrating Local Real Data with Global Gradient Prototypes for
Classifier Re-Balancing in Federated Long-Tailed Learning [60.41501515192088]
Federated Learning (FL) has become a popular distributed learning paradigm that involves multiple clients training a global model collaboratively.
The data samples usually follow a long-tailed distribution in the real world, and FL on the decentralized and long-tailed data yields a poorly-behaved global model.
In this work, we integrate the local real data with the global gradient prototypes to form the local balanced datasets.
arXiv Detail & Related papers (2023-01-25T03:18:10Z) - Efficient Split-Mix Federated Learning for On-Demand and In-Situ
Customization [107.72786199113183]
Federated learning (FL) provides a distributed learning framework for multiple participants to collaborate learning without sharing raw data.
In this paper, we propose a novel Split-Mix FL strategy for heterogeneous participants that, once training is done, provides in-situ customization of model sizes and robustness.
arXiv Detail & Related papers (2022-03-18T04:58:34Z) - GTG-Shapley: Efficient and Accurate Participant Contribution Evaluation
in Federated Learning [25.44023017628766]
Federated Learning (FL) bridges the gap between collaborative machine learning and preserving data privacy.
It is essential to fairly evaluate participants' contribution to the performance of the final FL model without exposing their private data.
We propose the Guided Truncation Gradient Shapley approach to address this challenge.
arXiv Detail & Related papers (2021-09-05T12:17:00Z) - Federated Robustness Propagation: Sharing Adversarial Robustness in
Federated Learning [98.05061014090913]
Federated learning (FL) emerges as a popular distributed learning schema that learns from a set of participating users without requiring raw data to be shared.
adversarial training (AT) provides a sound solution for centralized learning, extending its usage for FL users has imposed significant challenges.
We show that existing FL techniques cannot effectively propagate adversarial robustness among non-iid users.
We propose a simple yet effective propagation approach that transfers robustness through carefully designed batch-normalization statistics.
arXiv Detail & Related papers (2021-06-18T15:52:33Z) - Collaborative Fairness in Federated Learning [24.7378023761443]
We propose a novel Collaborative Fair Federated Learning (CFFL) framework for deep learning.
CFFL enforces participants to converge to different models, thus achieving fairness without compromising predictive performance.
Experiments on benchmark datasets demonstrate that CFFL achieves high fairness and delivers comparable accuracy to the Distributed framework.
arXiv Detail & Related papers (2020-08-27T14:39:09Z) - WAFFLe: Weight Anonymized Factorization for Federated Learning [88.44939168851721]
In domains where data are sensitive or private, there is great value in methods that can learn in a distributed manner without the data ever leaving the local devices.
We propose Weight Anonymized Factorization for Federated Learning (WAFFLe), an approach that combines the Indian Buffet Process with a shared dictionary of weight factors for neural networks.
arXiv Detail & Related papers (2020-08-13T04:26:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.