Federated Learning on Edge Sensing Devices: A Review
- URL: http://arxiv.org/abs/2311.01201v1
- Date: Thu, 2 Nov 2023 12:55:26 GMT
- Title: Federated Learning on Edge Sensing Devices: A Review
- Authors: Berrenur Saylam, \"Ozlem Durmaz \.Incel
- Abstract summary: Federated Learning (FL) is emerging as a solution to privacy, hardware, and connectivity limitations.
We focus on the key FL principles, software frameworks, and testbeds.
We also explore the current sensor technologies, properties of the sensing devices and sensing applications where FL is utilized.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The ability to monitor ambient characteristics, interact with them, and
derive information about the surroundings has been made possible by the rapid
proliferation of edge sensing devices like IoT, mobile, and wearable devices
and their measuring capabilities with integrated sensors. Even though these
devices are small and have less capacity for data storage and processing, they
produce vast amounts of data. Some example application areas where sensor data
is collected and processed include healthcare, environmental (including air
quality and pollution levels), automotive, industrial, aerospace, and
agricultural applications. These enormous volumes of sensing data collected
from the edge devices are analyzed using a variety of Machine Learning (ML) and
Deep Learning (DL) approaches. However, analyzing them on the cloud or a server
presents challenges related to privacy, hardware, and connectivity limitations.
Federated Learning (FL) is emerging as a solution to these problems while
preserving privacy by jointly training a model without sharing raw data. In
this paper, we review the FL strategies from the perspective of edge sensing
devices to get over the limitations of conventional machine learning
techniques. We focus on the key FL principles, software frameworks, and
testbeds. We also explore the current sensor technologies, properties of the
sensing devices and sensing applications where FL is utilized. We conclude with
a discussion on open issues and future research directions on FL for further
studies
Related papers
- Federated Learning for 6G: Paradigms, Taxonomy, Recent Advances and
Insights [52.024964564408]
This paper examines the added-value of implementing Federated Learning throughout all levels of the protocol stack.
It presents important FL applications, addresses hot topics, provides valuable insights and explicits guidance for future research and developments.
Our concluding remarks aim to leverage the synergy between FL and future 6G, while highlighting FL's potential to revolutionize wireless industry.
arXiv Detail & Related papers (2023-12-07T20:39:57Z) - Prototype of deployment of Federated Learning with IoT devices [0.0]
A huge amount of the resource desired, data, is stored in mobile devices, sensors and other Internet of Things (IoT) devices.
At the same time these devices do not have enough data or computational capacity to train good models.
Federated Learning (FL) provides an innovative solution that allows devices to learn in a collaborative way.
arXiv Detail & Related papers (2023-11-24T10:37:30Z) - FLEdge: Benchmarking Federated Machine Learning Applications in Edge Computing Systems [61.335229621081346]
Federated Learning (FL) has become a viable technique for realizing privacy-enhancing distributed deep learning on the network edge.
In this paper, we propose FLEdge, which complements existing FL benchmarks by enabling a systematic evaluation of client capabilities.
arXiv Detail & Related papers (2023-06-08T13:11:20Z) - Federated Learning and Meta Learning: Approaches, Applications, and
Directions [94.68423258028285]
In this tutorial, we present a comprehensive review of FL, meta learning, and federated meta learning (FedMeta)
Unlike other tutorial papers, our objective is to explore how FL, meta learning, and FedMeta methodologies can be designed, optimized, and evolved, and their applications over wireless networks.
arXiv Detail & Related papers (2022-10-24T10:59:29Z) - Online Data Selection for Federated Learning with Limited Storage [53.46789303416799]
Federated Learning (FL) has been proposed to achieve distributed machine learning among networked devices.
The impact of on-device storage on the performance of FL is still not explored.
In this work, we take the first step to consider the online data selection for FL with limited on-device storage.
arXiv Detail & Related papers (2022-09-01T03:27:33Z) - Federated Learning for Intrusion Detection System: Concepts, Challenges
and Future Directions [0.20236506875465865]
Intrusion detection systems play a significant role in ensuring security and privacy of smart devices.
The present paper aims to present an extensive and exhaustive review on the use of FL in intrusion detection system.
arXiv Detail & Related papers (2021-06-16T13:13:04Z) - Federated Learning: A Signal Processing Perspective [144.63726413692876]
Federated learning is an emerging machine learning paradigm for training models across multiple edge devices holding local datasets, without explicitly exchanging the data.
This article provides a unified systematic framework for federated learning in a manner that encapsulates and highlights the main challenges that are natural to treat using signal processing tools.
arXiv Detail & Related papers (2021-03-31T15:14:39Z) - Occupancy Detection in Room Using Sensor Data [0.0]
This paper provides a solution to detect occupancy using sensor data by using and testing several variables.
Seven famous algorithms in Machine Learning, namely as Decision Tree, Random Forest, Gradient Boosting Machine, Logistic Regression, Naive Bayes, Kernelized SVM and K-Nearest Neighbors are tested and compared.
arXiv Detail & Related papers (2021-01-10T19:53:57Z) - Fusion of Federated Learning and Industrial Internet of Things: A Survey [4.810675235074399]
Industrial Internet of Things (IIoT) lays a new paradigm for the concept of Industry 4.0 and paves an insight for new industrial era.
Smart machines and smart factories use machine learning/deep learning based models for incurring intelligence.
In order to address this issue, federated learning (FL) technology is implemented in IIoT by the researchers nowadays to provide safe, accurate, robust and unbiased models.
arXiv Detail & Related papers (2021-01-04T06:28:32Z) - Wireless Communications for Collaborative Federated Learning [160.82696473996566]
Internet of Things (IoT) devices may not be able to transmit their collected data to a central controller for training machine learning models.
Google's seminal FL algorithm requires all devices to be directly connected with a central controller.
This paper introduces a novel FL framework, called collaborative FL (CFL), which enables edge devices to implement FL with less reliance on a central controller.
arXiv Detail & Related papers (2020-06-03T20:00:02Z) - Federated Learning for Resource-Constrained IoT Devices: Panoramas and
State-of-the-art [12.129978716326676]
We introduce some recently implemented real-life applications of Federated Learning.
In large-scale networks, there may be clients with varying computational resource capabilities.
We highlight future directions in the FL area concerning resource-constrained devices.
arXiv Detail & Related papers (2020-02-25T01:03:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.