論文の概要: High-Quality Animatable Dynamic Garment Reconstruction from Monocular
Videos
- arxiv url: http://arxiv.org/abs/2311.01214v1
- Date: Thu, 2 Nov 2023 13:16:27 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-03 13:38:40.739800
- Title: High-Quality Animatable Dynamic Garment Reconstruction from Monocular
Videos
- Title(参考訳): 単眼映像からの高画質アニマタブルダイナミックガーメント再構成
- Authors: Xiongzheng Li, Jinsong Zhang, Yu-Kun Lai, Jingyu Yang, Kun Li
- Abstract要約: そこで本研究では,モノクロビデオから高品質なアニマタブルな動的衣服をスキャンデータに頼らずに回収する手法を提案する。
様々な不明瞭なポーズに対する合理的な変形を生成するために,学習可能な衣服変形ネットワークを提案する。
提案手法は,高品質な動的衣服をコヒーレントな表面形状で再構成し,見知らぬポーズで容易にアニメーションできることを示す。
- 参考スコア(独自算出の注目度): 51.8323369577494
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Much progress has been made in reconstructing garments from an image or a
video. However, none of existing works meet the expectations of digitizing
high-quality animatable dynamic garments that can be adjusted to various unseen
poses. In this paper, we propose the first method to recover high-quality
animatable dynamic garments from monocular videos without depending on scanned
data. To generate reasonable deformations for various unseen poses, we propose
a learnable garment deformation network that formulates the garment
reconstruction task as a pose-driven deformation problem. To alleviate the
ambiguity estimating 3D garments from monocular videos, we design a
multi-hypothesis deformation module that learns spatial representations of
multiple plausible deformations. Experimental results on several public
datasets demonstrate that our method can reconstruct high-quality dynamic
garments with coherent surface details, which can be easily animated under
unseen poses. The code will be provided for research purposes.
- Abstract(参考訳): 画像やビデオから衣服を復元する作業は、多くの進歩を遂げている。
しかし、既存の作品が、様々な目に見えないポーズに調整できる高品質のアニメーション可能な動的衣服をデジタル化するという期待を満たしていない。
本稿では,スキャンされたデータによらず,単眼映像から高品質なアニメーション可能な動的衣服を回収する最初の方法を提案する。
そこで本稿では, ポーズ駆動型変形問題として, 衣服復元タスクを定式化する, 学習可能な衣服変形ネットワークを提案する。
単眼映像から推定される3次元衣料品の曖昧さを緩和するため,複数変形の空間表現を学習するマルチハイポテーゼ変形モジュールを設計した。
いくつかの公開データセットにおける実験結果から,本手法はコヒーレントな表面詳細を持つ高品質な動的衣服を再現可能であり,無意味なポーズで容易にアニメーションできることを示した。
コードは研究目的で提供されます。
関連論文リスト
- DressRecon: Freeform 4D Human Reconstruction from Monocular Video [64.61230035671885]
本稿では,モノクラービデオから時間一貫性のある人体モデルを再構築する手法を提案する。
非常にゆるい衣服やハンドヘルドオブジェクトのインタラクションに重点を置いています。
DressReconは、先行技術よりも忠実度の高い3D再構築を実現している。
論文 参考訳(メタデータ) (2024-09-30T17:59:15Z) - VividPose: Advancing Stable Video Diffusion for Realistic Human Image Animation [79.99551055245071]
時間的安定性を向上するエンドツーエンドパイプラインであるVividPoseを提案する。
識別対応外見制御器は、他の外見の詳細を損なうことなく、追加の顔情報を統合する。
SMPL-Xからの高密度レンダリングマップとスパーススケルトンマップの両方を利用する幾何対応のポーズコントローラ。
VividPoseは、提案したWildデータセットに優れた一般化能力を示す。
論文 参考訳(メタデータ) (2024-05-28T13:18:32Z) - AniDress: Animatable Loose-Dressed Avatar from Sparse Views Using
Garment Rigging Model [58.035758145894846]
AniDressは、非常にスパースなマルチビュービデオを用いて、ゆるい服装でアニマタブルな人間のアバターを生成する新しい方法である。
身体運動と衣服運動の両方に条件付されたポーズ駆動型変形可能なニューラルラディアンス場を導入し、両方の部品を明示的に制御する。
本手法は,身体から高度に逸脱する自然の衣服のダイナミックスを描画し,目に見えない景色とポーズの両方に一般化することができる。
論文 参考訳(メタデータ) (2024-01-27T08:48:18Z) - REC-MV: REconstructing 3D Dynamic Cloth from Monocular Videos [23.25620556096607]
モノクロ映像から開放された境界でダイナミックな3D衣料表面を再構築することは重要な問題である。
本稿では,暗黙的特徴曲線と暗黙的符号距離場を協調的に最適化する,REC-MVと呼ばれる新しい手法を提案する。
提案手法は既存の手法より優れ, 高品質な動的衣料表面を創出できる。
論文 参考訳(メタデータ) (2023-05-23T16:53:10Z) - PERGAMO: Personalized 3D Garments from Monocular Video [6.8338761008826445]
PERGAMOはモノクロ画像から3D衣服の変形可能なモデルを学ぶためのデータ駆動型アプローチである。
まず,1枚の画像から衣服の3次元形状を再構築する新しい手法を紹介し,それを用いて単眼ビデオから衣服のデータセットを構築する。
本手法は,実世界の動作にマッチする衣料アニメーションを作成でき,モーションキャプチャーデータセットから抽出した身体の動きを一般化できることを示す。
論文 参考訳(メタデータ) (2022-10-26T21:15:54Z) - Learning Motion-Dependent Appearance for High-Fidelity Rendering of
Dynamic Humans from a Single Camera [49.357174195542854]
外観のダイナミクスを学ぶ上で重要な課題は、違法に大量の観測を必要とすることである。
本手法は,1つの視点映像から,身体のポーズや新しいビューを時間的に協調的に生成できることを示す。
論文 参考訳(メタデータ) (2022-03-24T00:22:03Z) - Dynamic Neural Garments [45.833166320896716]
本稿では,身体の関節運動を取り込み,リアルな動的衣服画像列を直接生成する解を提案する。
具体的には, アバターの目標関節運動列を考慮し, ダイナミック・ニューラル・ウェアスを提案し, プラウシブル・ダイナミック・ウェアスの外観をシミュレートし, レンダリングする。
論文 参考訳(メタデータ) (2021-02-23T17:21:21Z) - Deep Fashion3D: A Dataset and Benchmark for 3D Garment Reconstruction
from Single Images [50.34202789543989]
Deep Fashion3Dは、これまでで最大の3D衣料品のコレクションだ。
3D機能ライン、3Dボディポーズ、対応するマルチビューリアルイメージなど、リッチなアノテーションを提供する。
一つのネットワークであらゆる種類の衣服を学習できる新しい適応型テンプレートが提案されている。
論文 参考訳(メタデータ) (2020-03-28T09:20:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。