論文の概要: D-Garment: Physics-Conditioned Latent Diffusion for Dynamic Garment Deformations
- arxiv url: http://arxiv.org/abs/2504.03468v1
- Date: Fri, 04 Apr 2025 14:18:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-07 14:48:08.152092
- Title: D-Garment: Physics-Conditioned Latent Diffusion for Dynamic Garment Deformations
- Title(参考訳): D-Garment:動的ガーメント変形に対する物理条件付き潜時拡散
- Authors: Antoine Dumoulin, Adnane Boukhayma, Laurence Boissieux, Bharath Bhushan Damodaran, Pierre Hellier, Stefanie Wuhrer,
- Abstract要約: ガーメントダイナミクスは、着用者の体形や動きを含む物理的な入力や布材の特徴に依存する、しわパターンのような幾何学的詳細に影響を及ぼす。
本稿では,物理に基づくシミュレータで生成されたデータに基づいて学習に基づくアプローチを提案する。
- 参考スコア(独自算出の注目度): 9.991827725035373
- License:
- Abstract: Adjusting and deforming 3D garments to body shapes, body motion, and cloth material is an important problem in virtual and augmented reality. Applications are numerous, ranging from virtual change rooms to the entertainment and gaming industry. This problem is challenging as garment dynamics influence geometric details such as wrinkling patterns, which depend on physical input including the wearer's body shape and motion, as well as cloth material features. Existing work studies learning-based modeling techniques to generate garment deformations from example data, and physics-inspired simulators to generate realistic garment dynamics. We propose here a learning-based approach trained on data generated with a physics-based simulator. Compared to prior work, our 3D generative model learns garment deformations for loose cloth geometry, especially for large deformations and dynamic wrinkles driven by body motion and cloth material. Furthermore, the model can be efficiently fitted to observations captured using vision sensors. We propose to leverage the capability of diffusion models to learn fine-scale detail: we model the 3D garment in a 2D parameter space, and learn a latent diffusion model using this representation independent from the mesh resolution. This allows to condition global and local geometric information with body and material information. We quantitatively and qualitatively evaluate our method on both simulated data and data captured with a multi-view acquisition platform. Compared to strong baselines, our method is more accurate in terms of Chamfer distance.
- Abstract(参考訳): 3D衣服を体形、体の動き、布の素材に調整・変形することは、仮想現実や拡張現実において重要な問題である。
バーチャルチェンジルームからエンターテイメントやゲーム産業まで、さまざまなアプリケーションがあります。
この問題は、着物力学が、着用者の体形や動きを含む物理的な入力や布材の特徴に依存する、しわパターンなどの幾何学的詳細に影響を及ぼすためである。
既存の研究は、サンプルデータから衣服の変形を生成する学習に基づくモデリング技術と、現実的な衣服力学を生成する物理に触発されたシミュレータである。
本稿では,物理に基づくシミュレータで生成されたデータに基づいて学習に基づくアプローチを提案する。
これまでの3D生成モデルと比較すると, ゆるやかな布の形状, 特に体の動きや布の素材によって駆動される大きな変形や動的しわについて, 衣服の変形を学習する。
さらに、このモデルは視覚センサを用いて捉えた観察に効率よく適合させることができる。
本研究では,2次元パラメータ空間で3次元衣服をモデル化し,メッシュ分解能とは独立にこの表現を用いて潜時拡散モデルを学習する。
これにより、グローバルかつ局所的な幾何学的情報と、ボディおよびマテリアル情報とを条件付けることができる。
我々は,マルチビュー取得プラットフォームで収集したシミュレーションデータとデータの両方について,定量的に定性的に評価する。
強基底線と比較すると,チャムファー距離はより正確である。
関連論文リスト
- Towards High-Quality 3D Motion Transfer with Realistic Apparel Animation [69.36162784152584]
本研究では,現実的なアパレルアニメーションを用いた高品質な動き伝達を目的とした新しい手法を提案する。
本稿では,2つのニューラル変形モジュールを介し,物体とアパレルの変形を学習するデータ駆動パイプラインを提案する。
本手法は各種アパレルの品質に優れた結果をもたらす。
論文 参考訳(メタデータ) (2024-07-15T22:17:35Z) - PICA: Physics-Integrated Clothed Avatar [30.277983921620663]
PICAは, 物理学的精度のよい, 高忠実でアニマタブルな人間のアバターを, ゆるやかな衣服でも表現できる新しい表現法である。
提案手法は, 複雑で斬新な運転ポーズにおいて, 人体の高忠実なレンダリングを実現し, 従来手法よりも大幅に優れていた。
論文 参考訳(メタデータ) (2024-07-07T10:23:21Z) - Physics3D: Learning Physical Properties of 3D Gaussians via Video Diffusion [35.71595369663293]
ビデオ拡散モデルを用いて3Dオブジェクトの様々な物理的特性を学習する新しい手法である textbfPhysics3D を提案する。
本手法では,粘弾性材料モデルに基づく高一般化物理シミュレーションシステムを設計する。
弾性材料とプラスチック材料の両方を用いて, 本手法の有効性を実証した。
論文 参考訳(メタデータ) (2024-06-06T17:59:47Z) - AniDress: Animatable Loose-Dressed Avatar from Sparse Views Using
Garment Rigging Model [58.035758145894846]
AniDressは、非常にスパースなマルチビュービデオを用いて、ゆるい服装でアニマタブルな人間のアバターを生成する新しい方法である。
身体運動と衣服運動の両方に条件付されたポーズ駆動型変形可能なニューラルラディアンス場を導入し、両方の部品を明示的に制御する。
本手法は,身体から高度に逸脱する自然の衣服のダイナミックスを描画し,目に見えない景色とポーズの両方に一般化することができる。
論文 参考訳(メタデータ) (2024-01-27T08:48:18Z) - SNUG: Self-Supervised Neural Dynamic Garments [14.83072352654608]
本研究では,パラメトリックな人体が着る衣服の動的3次元変形を自己指導的に学習する手法を提案する。
これにより、動的変形や細かいしわを含むインタラクティブな衣服のモデルを、トレーニング時間に2桁の速度で学習することができる。
論文 参考訳(メタデータ) (2022-04-05T13:50:21Z) - 3D Neural Scene Representations for Visuomotor Control [78.79583457239836]
我々は2次元視覚観測から動的3次元シーンのモデルを純粋に学習する。
学習した表現空間上に構築された動的モデルにより,操作課題に対するビジュモータ制御が可能となる。
論文 参考訳(メタデータ) (2021-07-08T17:49:37Z) - Real-time Deep Dynamic Characters [95.5592405831368]
本研究では,高度にリアルな形状,動き,ダイナミックな外観を示す3次元人物モデルを提案する。
我々は,新しいグラフ畳み込みネットワークアーキテクチャを用いて,身体と衣服の運動依存的変形学習を実現する。
本モデルでは, 運動依存的表面変形, 物理的に妥当な動的衣服変形, および映像現実的表面テクスチャを, 従来よりも細部まで高レベルに生成することを示す。
論文 参考訳(メタデータ) (2021-05-04T23:28:55Z) - S3: Neural Shape, Skeleton, and Skinning Fields for 3D Human Modeling [103.65625425020129]
歩行者の形状、ポーズ、皮膚の重みを、データから直接学習する神経暗黙関数として表現します。
各種データセットに対するアプローチの有効性を実証し,既存の最先端手法よりも再現性が優れていることを示す。
論文 参考訳(メタデータ) (2021-01-17T02:16:56Z) - Fully Convolutional Graph Neural Networks for Parametric Virtual Try-On [9.293488420613148]
完全畳み込みグラフニューラルネットワークに基づく仮想試行アプリケーションのための学習に基づくアプローチを提案する。
特定の衣服やメッシュトポロジーのために訓練された既存のデータ駆動モデルとは対照的に、私たちの完全な畳み込みモデルは、大きな種類の衣服を扱うことができる。
内部では、3つの異なる変形源を分離し、衣服のフィットを条件にすることで、3D衣服のドレープを学習する新しい幾何学的深層学習手法が提案されている。
論文 参考訳(メタデータ) (2020-09-09T22:38:03Z) - Combining Implicit Function Learning and Parametric Models for 3D Human
Reconstruction [123.62341095156611]
深層学習近似として表される暗黙の関数は、3次元曲面の再構成に強力である。
このような機能は、コンピュータグラフィックスとコンピュータビジョンの両方に柔軟なモデルを構築するのに不可欠である。
詳細に富んだ暗黙関数とパラメトリック表現を組み合わせた方法論を提案する。
論文 参考訳(メタデータ) (2020-07-22T13:46:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。