Homography augumented momentum constrastive learning for SAR image
retrieval
- URL: http://arxiv.org/abs/2109.10329v1
- Date: Tue, 21 Sep 2021 17:27:07 GMT
- Title: Homography augumented momentum constrastive learning for SAR image
retrieval
- Authors: Seonho Park, Maciej Rysz, Kathleen M. Dipple and Panos M. Pardalos
- Abstract summary: We propose a deep learning-based image retrieval approach using homography transformation augmented contrastive learning.
We also propose a training method for the DNNs induced by contrastive learning that does not require any labeling procedure.
- Score: 3.9743795764085545
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning-based image retrieval has been emphasized in computer vision.
Representation embedding extracted by deep neural networks (DNNs) not only aims
at containing semantic information of the image, but also can manage
large-scale image retrieval tasks. In this work, we propose a deep
learning-based image retrieval approach using homography transformation
augmented contrastive learning to perform large-scale synthetic aperture radar
(SAR) image search tasks. Moreover, we propose a training method for the DNNs
induced by contrastive learning that does not require any labeling procedure.
This may enable tractability of large-scale datasets with relative ease.
Finally, we verify the performance of the proposed method by conducting
experiments on the polarimetric SAR image datasets.
Related papers
- Deep Learning Based Speckle Filtering for Polarimetric SAR Images. Application to Sentinel-1 [51.404644401997736]
We propose a complete framework to remove speckle in polarimetric SAR images using a convolutional neural network.
Experiments show that the proposed approach offers exceptional results in both speckle reduction and resolution preservation.
arXiv Detail & Related papers (2024-08-28T10:07:17Z) - Exploring Deep Learning Image Super-Resolution for Iris Recognition [50.43429968821899]
We propose the use of two deep learning single-image super-resolution approaches: Stacked Auto-Encoders (SAE) and Convolutional Neural Networks (CNN)
We validate the methods with a database of 1.872 near-infrared iris images with quality assessment and recognition experiments showing the superiority of deep learning approaches over the compared algorithms.
arXiv Detail & Related papers (2023-11-02T13:57:48Z) - An Empirical Study of Remote Sensing Pretraining [117.90699699469639]
We conduct an empirical study of remote sensing pretraining (RSP) on aerial images.
RSP can help deliver distinctive performances in scene recognition tasks.
RSP mitigates the data discrepancies of traditional ImageNet pretraining on RS images, but it may still suffer from task discrepancies.
arXiv Detail & Related papers (2022-04-06T13:38:11Z) - Learning Efficient Representations for Enhanced Object Detection on
Large-scene SAR Images [16.602738933183865]
It is a challenging problem to detect and recognize targets on complex large-scene Synthetic Aperture Radar (SAR) images.
Recently developed deep learning algorithms can automatically learn the intrinsic features of SAR images.
We propose an efficient and robust deep learning based target detection method.
arXiv Detail & Related papers (2022-01-22T03:25:24Z) - Deep-Learning-Based Single-Image Height Reconstruction from
Very-High-Resolution SAR Intensity Data [1.7894377200944511]
We present the first-ever demonstration of deep learning-based single image height prediction for the other important sensor modality in remote sensing: synthetic aperture radar (SAR) data.
Besides the adaptation of a convolutional neural network (CNN) architecture for SAR intensity images, we present a workflow for the generation of training data.
Since we put a particular emphasis on transferability, we are able to confirm that deep learning-based single-image height estimation is not only possible, but also transfers quite well to unseen data.
arXiv Detail & Related papers (2021-11-03T08:20:03Z) - Voice-assisted Image Labelling for Endoscopic Ultrasound Classification
using Neural Networks [48.732863591145964]
We propose a multi-modal convolutional neural network architecture that labels endoscopic ultrasound (EUS) images from raw verbal comments provided by a clinician during the procedure.
Our results show a prediction accuracy of 76% at image level on a dataset with 5 different labels.
arXiv Detail & Related papers (2021-10-12T21:22:24Z) - Semantic segmentation of multispectral photoacoustic images using deep
learning [53.65837038435433]
Photoacoustic imaging has the potential to revolutionise healthcare.
Clinical translation of the technology requires conversion of the high-dimensional acquired data into clinically relevant and interpretable information.
We present a deep learning-based approach to semantic segmentation of multispectral photoacoustic images.
arXiv Detail & Related papers (2021-05-20T09:33:55Z) - Sparse Signal Models for Data Augmentation in Deep Learning ATR [0.8999056386710496]
We propose a data augmentation approach to incorporate domain knowledge and improve the generalization power of a data-intensive learning algorithm.
We exploit the sparsity of the scattering centers in the spatial domain and the smoothly-varying structure of the scattering coefficients in the azimuthal domain to solve the ill-posed problem of over-parametrized model fitting.
arXiv Detail & Related papers (2020-12-16T21:46:33Z) - Speckle2Void: Deep Self-Supervised SAR Despeckling with Blind-Spot
Convolutional Neural Networks [30.410981386006394]
despeckling is a crucial preliminary step in scene analysis algorithms.
Recent success of deep learning envisions a new generation of despeckling techniques.
We propose a self-supervised Bayesian despeckling method.
arXiv Detail & Related papers (2020-07-04T11:38:48Z) - DeepEMD: Differentiable Earth Mover's Distance for Few-Shot Learning [122.51237307910878]
We develop methods for few-shot image classification from a new perspective of optimal matching between image regions.
We employ the Earth Mover's Distance (EMD) as a metric to compute a structural distance between dense image representations.
To generate the important weights of elements in the formulation, we design a cross-reference mechanism.
arXiv Detail & Related papers (2020-03-15T08:13:16Z) - RDAnet: A Deep Learning Based Approach for Synthetic Aperture Radar
Image Formation [0.0]
We train a deep neural network that performs both the image formation and image processing tasks, integrating the SAR processing pipeline.
Results show that our integrated pipeline can output accurately classified SAR imagery with image quality comparable to those formed using a traditional algorithm.
arXiv Detail & Related papers (2020-01-22T18:44:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.