Pushing the Limits of Quantum Computing for Simulating PFAS Chemistry
- URL: http://arxiv.org/abs/2311.01242v1
- Date: Thu, 2 Nov 2023 13:58:02 GMT
- Title: Pushing the Limits of Quantum Computing for Simulating PFAS Chemistry
- Authors: Emil Dimitrov, Goar Sanchez-Sanz, James Nelson, Lee O'Riordan, Myles
Doyle, Sean Courtney, Venkatesh Kannan, Hassan Naseri, Alberto Garcia Garcia,
James Tricker, Marisa Faraggi, Joshua Goings, Luning Zhao
- Abstract summary: Solving the electronic Schrodinger equation is the core problem of computational chemistry.
We propose an end-to-end quantum chemistry pipeline based on the variational quantum eigensolver (VQE) algorithm.
Our platform orchestrates hundreds of simulation jobs on compute resources to efficiently complete ab initio chemistry experiments.
- Score: 0.3655818759482589
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate and scalable methods for computational quantum chemistry can
accelerate research and development in many fields, ranging from drug discovery
to advanced material design. Solving the electronic Schrodinger equation is the
core problem of computational chemistry. However, the combinatorial complexity
of this problem makes it intractable to find exact solutions, except for very
small systems. The idea of quantum computing originated from this computational
challenge in simulating quantum-mechanics. We propose an end-to-end quantum
chemistry pipeline based on the variational quantum eigensolver (VQE) algorithm
and integrated with both HPC-based simulators and a trapped-ion quantum
computer. Our platform orchestrates hundreds of simulation jobs on compute
resources to efficiently complete a set of ab initio chemistry experiments with
a wide range of parameterization. Per- and poly-fluoroalkyl substances (PFAS)
are a large family of human-made chemicals that pose a major environmental and
health issue globally. Our simulations includes breaking a Carbon-Fluorine bond
in trifluoroacetic acid (TFA), a common PFAS chemical. This is a common pathway
towards destruction and removal of PFAS. Molecules are modeled on both a
quantum simulator and a trapped-ion quantum computer, specifically IonQ Aria.
Using basic error mitigation techniques, the 11-qubit TFA model (56 entangling
gates) on IonQ Aria yields near-quantitative results with milli-Hartree
accuracy. Our novel results show the current state and future projections for
quantum computing in solving the electronic structure problem, push the
boundaries for the VQE algorithm and quantum computers, and facilitates
development of quantum chemistry workflows.
Related papers
- Quantum Embedding of Non-local Quantum Many-body Interactions in Prototypal Anti-tumor Vaccine Metalloprotein on Near Term Quantum Computing Hardware [4.8962578963959675]
We present for the first time a quantum computer model simulation of a complex hemocyanin molecule.
Hemocyanin is an important respiratory protein involved in various physiological processes.
We conclude that the magnetic structure of hemocyanin is largely influenced by the many-body correction.
arXiv Detail & Related papers (2024-10-16T16:49:42Z) - Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
We present a model for parallelizing simulation of quantum circuit executions.
The model can take advantage of its backend-agnostic features, enabling parallel quantum circuit execution over any target backend.
arXiv Detail & Related papers (2024-06-05T17:16:07Z) - Use VQE to calculate the ground energy of hydrogen molecules on IBM
Quantum [2.3889084213601346]
We implement the Variational Quantum Eigensolver (VQE) algorithm using Qiskit on the IBM Quantum platform to calculate the ground state energy of a hydrogen molecule.
Our fi ndings demonstrate that VQE can effi ciently calculate molecular properties with high accuracy.
arXiv Detail & Related papers (2023-05-11T02:53:26Z) - A hybrid quantum-classical algorithm for multichannel quantum scattering
of atoms and molecules [62.997667081978825]
We propose a hybrid quantum-classical algorithm for solving the Schr"odinger equation for atomic and molecular collisions.
The algorithm is based on the $S$-matrix version of the Kohn variational principle, which computes the fundamental scattering $S$-matrix.
We show how the algorithm could be scaled up to simulate collisions of large polyatomic molecules.
arXiv Detail & Related papers (2023-04-12T18:10:47Z) - Differentiable matrix product states for simulating variational quantum
computational chemistry [6.954927515599816]
We propose a parallelizable classical simulator for variational quantum eigensolver(VQE)
Our simulator seamlessly integrates the quantum circuit evolution into the classical auto-differentiation framework.
As applications, we use our simulator to study commonly used small molecules such as HF, LiH and H$$O, as well as larger molecules CO$$, BeH$ and H$_4$ with up to $40$ qubits.
arXiv Detail & Related papers (2022-11-15T08:36:26Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
Current generation noisy intermediate-scale quantum (NISQ) computers are severely limited in chip size and error rates.
We derive localized circuit transformations to efficiently compress quantum circuits for simulation of certain spin Hamiltonians known as free fermions.
The proposed numerical circuit compression algorithm behaves backward stable and scales cubically in the number of spins enabling circuit synthesis beyond $mathcalO(103)$ spins.
arXiv Detail & Related papers (2021-08-06T19:38:03Z) - Computing molecular excited states on a D-Wave quantum annealer [52.5289706853773]
We demonstrate the use of a D-Wave quantum annealer for the calculation of excited electronic states of molecular systems.
These simulations play an important role in a number of areas, such as photovoltaics, semiconductor technology and nanoscience.
arXiv Detail & Related papers (2021-07-01T01:02:17Z) - Calculation of the ground-state Stark effect in small molecules using
the variational quantum eigensolver [0.0]
We study a quantum simulation for the hydrogen (H2) and lithium hydride (LiH) molecules, at an actual commercially available quantum computer, the IBM Q.
Using the Variational Quantum Eigensolver (VQE) method, we study the molecule's ground state energy versus interatomic distance, under the action of stationary electric fields.
arXiv Detail & Related papers (2021-03-22T11:49:42Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
We apply a quantum algorithm to a D-Wave quantum annealer to solve a small scale seismic inversions problem.
The accuracy achieved by the quantum computer is at least as good as that of the classical computer.
arXiv Detail & Related papers (2020-05-06T14:18:44Z) - Simulating quantum chemistry in the seniority-zero space on qubit-based
quantum computers [0.0]
We combine the so-called seniority-zero, or paired-electron, approximation of computational quantum chemistry with techniques for simulating molecular chemistry on gate-based quantum computers.
We show that using the freed-up quantum resources for increasing the basis set can lead to more accurate results and reductions in the necessary number of quantum computing runs.
arXiv Detail & Related papers (2020-01-31T19:44:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.