Differentiable matrix product states for simulating variational quantum
computational chemistry
- URL: http://arxiv.org/abs/2211.07983v4
- Date: Thu, 30 Nov 2023 11:59:06 GMT
- Title: Differentiable matrix product states for simulating variational quantum
computational chemistry
- Authors: Chu Guo, Yi Fan, Zhiqian Xu, Honghui Shang
- Abstract summary: We propose a parallelizable classical simulator for variational quantum eigensolver(VQE)
Our simulator seamlessly integrates the quantum circuit evolution into the classical auto-differentiation framework.
As applications, we use our simulator to study commonly used small molecules such as HF, LiH and H$$O, as well as larger molecules CO$$, BeH$ and H$_4$ with up to $40$ qubits.
- Score: 6.954927515599816
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum Computing is believed to be the ultimate solution for quantum
chemistry problems. Before the advent of large-scale, fully fault-tolerant
quantum computers, the variational quantum eigensolver~(VQE) is a promising
heuristic quantum algorithm to solve real world quantum chemistry problems on
near-term noisy quantum computers. Here we propose a highly parallelizable
classical simulator for VQE based on the matrix product state representation of
quantum state, which significantly extend the simulation range of the existing
simulators. Our simulator seamlessly integrates the quantum circuit evolution
into the classical auto-differentiation framework, thus the gradients could be
computed efficiently similar to the classical deep neural network, with a
scaling that is independent of the number of variational parameters. As
applications, we use our simulator to study commonly used small molecules such
as HF, HCl, LiH and H$_2$O, as well as larger molecules CO$_2$, BeH$_2$ and
H$_4$ with up to $40$ qubits. The favorable scaling of our simulator against
the number of qubits and the number of parameters could make it an ideal
testing ground for near-term quantum algorithms and a perfect benchmarking
baseline for oncoming large scale VQE experiments on noisy quantum computers.
Related papers
- Experimental Quantum Simulation of Chemical Dynamics [0.0]
Existing digital quantum algorithms for chemical simulation require many logical qubits and gates.
Here, we use an analog approach to carry out the first quantum simulations of chemical reactions.
arXiv Detail & Related papers (2024-09-06T06:28:05Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
We present a model for parallelizing simulation of quantum circuit executions.
The model can take advantage of its backend-agnostic features, enabling parallel quantum circuit execution over any target backend.
arXiv Detail & Related papers (2024-06-05T17:16:07Z) - Pushing the Limits of Quantum Computing for Simulating PFAS Chemistry [0.3655818759482589]
Solving the electronic Schrodinger equation is the core problem of computational chemistry.
We propose an end-to-end quantum chemistry pipeline based on the variational quantum eigensolver (VQE) algorithm.
Our platform orchestrates hundreds of simulation jobs on compute resources to efficiently complete ab initio chemistry experiments.
arXiv Detail & Related papers (2023-11-02T13:58:02Z) - Towards practical and massively parallel quantum computing emulation for
quantum chemistry [10.095945254794906]
Quantum computing is moving beyond its early stage and seeking for commercial applications in chemical and biomedical sciences.
It is valuable to emulate quantum computing on classical computers for developing quantum algorithms and validating quantum hardware.
Here we demonstrate a high-performance and massively parallel variational quantum eigensolver simulator based on matrix product states.
arXiv Detail & Related papers (2023-03-07T06:44:18Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Toward Practical Quantum Embedding Simulation of Realistic Chemical
Systems on Near-term Quantum Computers [10.26362298019201]
We numerically test the method for the hydrogenation reaction of C6H8 and the equilibrium geometry of the C18 molecule, with basis sets up to cc-pVDZ.
Our work implies the possibility of solving industrial chemical problems on near-term quantum devices.
arXiv Detail & Related papers (2021-09-16T15:44:38Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
Current generation noisy intermediate-scale quantum (NISQ) computers are severely limited in chip size and error rates.
We derive localized circuit transformations to efficiently compress quantum circuits for simulation of certain spin Hamiltonians known as free fermions.
The proposed numerical circuit compression algorithm behaves backward stable and scales cubically in the number of spins enabling circuit synthesis beyond $mathcalO(103)$ spins.
arXiv Detail & Related papers (2021-08-06T19:38:03Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
We present a modernized version of the Quantum Virtual Machine (TNQVM) which serves as a quantum circuit simulation backend in the e-scale ACCelerator (XACC) framework.
The new version is based on the general purpose, scalable network processing library, ExaTN, and provides multiple quantum circuit simulators.
By combining the portable XACC quantum processors and the scalable ExaTN backend we introduce an end-to-end virtual development environment which can scale from laptops to future exascale platforms.
arXiv Detail & Related papers (2021-04-21T13:26:42Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z) - Simulating quantum chemistry in the seniority-zero space on qubit-based
quantum computers [0.0]
We combine the so-called seniority-zero, or paired-electron, approximation of computational quantum chemistry with techniques for simulating molecular chemistry on gate-based quantum computers.
We show that using the freed-up quantum resources for increasing the basis set can lead to more accurate results and reductions in the necessary number of quantum computing runs.
arXiv Detail & Related papers (2020-01-31T19:44:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.