Absence of barren plateaus in finite local-depth circuits with long-range entanglement
- URL: http://arxiv.org/abs/2311.01393v4
- Date: Wed, 10 Apr 2024 05:36:08 GMT
- Title: Absence of barren plateaus in finite local-depth circuits with long-range entanglement
- Authors: Hao-Kai Zhang, Shuo Liu, Shi-Xin Zhang,
- Abstract summary: shallow parameterized circuits can be effectively trained to obtain short-range entangled states.
Deep circuits are generally untrainable due to the barren plateau phenomenon.
We prove the absence of barren plateaus in training finite local-depth circuits.
- Score: 3.6343650965508187
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ground state preparation is classically intractable for general Hamiltonians. On quantum devices, shallow parameterized circuits can be effectively trained to obtain short-range entangled states under the paradigm of variational quantum eigensolver, while deep circuits are generally untrainable due to the barren plateau phenomenon. In this Letter, we give a general lower bound on the variance of circuit gradients for arbitrary quantum circuits composed of local 2-designs. Based on our unified framework, we prove the absence of barren plateaus in training finite local-depth circuits (FLDC) for the ground states of local Hamiltonians. FLDCs are allowed to be deep in the conventional circuit depth to generate long-range entangled ground states, such as topologically ordered states, but their local depths are finite, i.e., there is only a finite number of gates acting on individual qubits. This characteristic sets FLDC apart from shallow circuits: FLDC in general cannot be classically simulated to estimate local observables efficiently by existing tensor network methods in two and higher dimensions. We validate our analytical results with extensive numerical simulations and demonstrate the effectiveness of variational training using the generalized toric code model.
Related papers
- Variational LOCC-assisted quantum circuits for long-range entangled states [1.6258326496071918]
Long-range entanglement is an important quantum resource, especially for topological orders and quantum error correction.
A promising avenue is offered by replacing some quantum resources with local operations and classical communication (LOCC)
Here, we propose a quantum-classical hybrid algorithm to find ground states of given Hamiltonians based on parameterized LOCC protocols.
arXiv Detail & Related papers (2024-09-11T14:08:33Z) - Hardware-efficient ansatz without barren plateaus in any depth [1.3108652488669736]
Variational quantum circuits have recently gained much interest due to their relevance in real-world applications.
Despite their huge potential, the practical usefulness of those circuits beyond tens of qubits is largely questioned.
One of the major problems is the so-called barren plateaus phenomenon.
arXiv Detail & Related papers (2024-03-07T19:00:12Z) - Gaussian initializations help deep variational quantum circuits escape
from the barren plateau [87.04438831673063]
Variational quantum circuits have been widely employed in quantum simulation and quantum machine learning in recent years.
However, quantum circuits with random structures have poor trainability due to the exponentially vanishing gradient with respect to the circuit depth and the qubit number.
This result leads to a general belief that deep quantum circuits will not be feasible for practical tasks.
arXiv Detail & Related papers (2022-03-17T15:06:40Z) - Toward Trainability of Deep Quantum Neural Networks [87.04438831673063]
Quantum Neural Networks (QNNs) with random structures have poor trainability due to the exponentially vanishing gradient as the circuit depth and the qubit number increase.
We provide the first viable solution to the vanishing gradient problem for deep QNNs with theoretical guarantees.
arXiv Detail & Related papers (2021-12-30T10:27:08Z) - Determining ground-state phase diagrams on quantum computers via a
generalized application of adiabatic state preparation [61.49303789929307]
We use a local adiabatic ramp for state preparation to allow us to directly compute ground-state phase diagrams on a quantum computer via time evolution.
We are able to calculate an accurate phase diagram on both two and three site systems using IBM quantum machines.
arXiv Detail & Related papers (2021-12-08T23:59:33Z) - Preparing Renormalization Group Fixed Points on NISQ Hardware [0.0]
We numerically and experimentally study the robust preparation of the ground state of the critical Ising model using circuits adapted from the work of Evenbly and White.
The experimental implementation exhibits self-correction through renormalization seen in the convergence and stability of local observables.
We also numerically test error mitigation by zero-noise extrapolation schemes specially adapted for renormalization circuits.
arXiv Detail & Related papers (2021-09-20T18:35:11Z) - Bose-Einstein condensate soliton qubit states for metrological
applications [58.720142291102135]
We propose novel quantum metrology applications with two soliton qubit states.
Phase space analysis, in terms of population imbalance - phase difference variables, is also performed to demonstrate macroscopic quantum self-trapping regimes.
arXiv Detail & Related papers (2020-11-26T09:05:06Z) - Universal Effectiveness of High-Depth Circuits in Variational
Eigenproblems [6.310247417832755]
We show that generic high-depth circuits, performing a sequence of layer unitaries of the same form, can accurately approximate the desired states.
We demonstrate their universal success by using two Hamiltonian systems with very different properties.
arXiv Detail & Related papers (2020-10-01T00:39:22Z) - Hardware-Encoding Grid States in a Non-Reciprocal Superconducting
Circuit [62.997667081978825]
We present a circuit design composed of a non-reciprocal device and Josephson junctions whose ground space is doubly degenerate and the ground states are approximate codewords of the Gottesman-Kitaev-Preskill (GKP) code.
We find that the circuit is naturally protected against the common noise channels in superconducting circuits, such as charge and flux noise, implying that it can be used for passive quantum error correction.
arXiv Detail & Related papers (2020-02-18T16:45:09Z) - Efficient classical simulation of random shallow 2D quantum circuits [104.50546079040298]
Random quantum circuits are commonly viewed as hard to simulate classically.
We show that approximate simulation of typical instances is almost as hard as exact simulation.
We also conjecture that sufficiently shallow random circuits are efficiently simulable more generally.
arXiv Detail & Related papers (2019-12-31T19:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.