Variational LOCC-assisted quantum circuits for long-range entangled states
- URL: http://arxiv.org/abs/2409.07281v1
- Date: Wed, 11 Sep 2024 14:08:33 GMT
- Title: Variational LOCC-assisted quantum circuits for long-range entangled states
- Authors: Yuxuan Yan, Muzhou Ma, You Zhou, Xiongfeng Ma,
- Abstract summary: Long-range entanglement is an important quantum resource, especially for topological orders and quantum error correction.
A promising avenue is offered by replacing some quantum resources with local operations and classical communication (LOCC)
Here, we propose a quantum-classical hybrid algorithm to find ground states of given Hamiltonians based on parameterized LOCC protocols.
- Score: 1.6258326496071918
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Long-range entanglement is an important quantum resource, especially for topological orders and quantum error correction. In reality, preparing long-range entangled states requires a deep unitary circuit, which poses significant experimental challenges. A promising avenue is offered by replacing some quantum resources with local operations and classical communication (LOCC). With these classical components, one can communicate information from mid-circuit measurements in distant parts of the system, which results in a substantial reduction of circuit depth in many important cases. However, to prepare general long-range entangled states, finding LOCC-assisted circuits of a short depth remains an open question. Here, we address such a challenge by proposing a quantum-classical hybrid algorithm to find ground states of given Hamiltonians based on parameterized LOCC protocols. We introduce an efficient protocol for estimating parameter gradients and use such gradients for variational optimization. Theoretically, we establish the conditions for the absence of barren plateaus, ensuring trainability at a large system size. Numerically, the algorithm accurately solves the ground state of long-range entangled models, such as the perturbed GHZ state and surface code. Our results clearly demonstrate the practical advantage of our algorithm in the accuracy of estimated ground state energy over conventional unitary variational circuits, as well as the theoretical advantage in creating long-range entanglement.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - A circuit-generated quantum subspace algorithm for the variational quantum eigensolver [0.0]
We propose combining quantum subspace techniques with the variational quantum eigensolver (VQE)
In our approach, the parameterized quantum circuit is divided into a series of smaller subcircuits.
The sequential application of these subcircuits to an initial state generates a set of wavefunctions that we use as a quantum subspace to obtain high-accuracy groundstate energies.
arXiv Detail & Related papers (2024-04-09T18:00:01Z) - Sparse Quantum State Preparation for Strongly Correlated Systems [0.0]
In principle, the encoding of the exponentially scaling many-electron wave function onto a linearly scaling qubit register offers a promising solution to overcome the limitations of traditional quantum chemistry methods.
An essential requirement for ground state quantum algorithms to be practical is the initialisation of the qubits to a high-quality approximation of the sought-after ground state.
Quantum State Preparation (QSP) allows the preparation of approximate eigenstates obtained from classical calculations, but it is frequently treated as an oracle in quantum information.
arXiv Detail & Related papers (2023-11-06T18:53:50Z) - Efficient Quantum Circuits based on the Quantum Natural Gradient [0.0]
Efficient preparation of arbitrary entangled quantum states is crucial for quantum computation.
We propose symmetry-conserving modified quantum approximate optimization algorithm(SCom-QAOA) circuits.
The proposed scheme enlarges the set of the initial states accessible for variational quantum algorithms and widens the scope of investigation of non-equilibrium phenomena in quantum simulators.
arXiv Detail & Related papers (2023-10-16T16:08:57Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Realizing the Nishimori transition across the error threshold for
constant-depth quantum circuits [0.0]
We study the generation of the simplest long-range order on a 127 superconducting qubit device.
By experimentally tuning coherent and incoherent error rates, we demonstrate stability of this decoded long-range order in two spatial dimensions.
Our study exemplifies how measurement-based state preparation can be meaningfully explored on quantum processors beyond a hundred qubits.
arXiv Detail & Related papers (2023-09-06T09:43:12Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
We present a technique that pinpoints the sections of a quantum circuit that affect the circuit output the most.
We demonstrate the practicality and efficacy of the proposed technique by applying it to example algorithmic circuits implemented on IBM quantum machines.
arXiv Detail & Related papers (2022-04-12T19:39:31Z) - Gaussian initializations help deep variational quantum circuits escape
from the barren plateau [87.04438831673063]
Variational quantum circuits have been widely employed in quantum simulation and quantum machine learning in recent years.
However, quantum circuits with random structures have poor trainability due to the exponentially vanishing gradient with respect to the circuit depth and the qubit number.
This result leads to a general belief that deep quantum circuits will not be feasible for practical tasks.
arXiv Detail & Related papers (2022-03-17T15:06:40Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Preparing Renormalization Group Fixed Points on NISQ Hardware [0.0]
We numerically and experimentally study the robust preparation of the ground state of the critical Ising model using circuits adapted from the work of Evenbly and White.
The experimental implementation exhibits self-correction through renormalization seen in the convergence and stability of local observables.
We also numerically test error mitigation by zero-noise extrapolation schemes specially adapted for renormalization circuits.
arXiv Detail & Related papers (2021-09-20T18:35:11Z) - Hardware-Encoding Grid States in a Non-Reciprocal Superconducting
Circuit [62.997667081978825]
We present a circuit design composed of a non-reciprocal device and Josephson junctions whose ground space is doubly degenerate and the ground states are approximate codewords of the Gottesman-Kitaev-Preskill (GKP) code.
We find that the circuit is naturally protected against the common noise channels in superconducting circuits, such as charge and flux noise, implying that it can be used for passive quantum error correction.
arXiv Detail & Related papers (2020-02-18T16:45:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.