Learning Realistic Traffic Agents in Closed-loop
- URL: http://arxiv.org/abs/2311.01394v1
- Date: Thu, 2 Nov 2023 16:55:23 GMT
- Title: Learning Realistic Traffic Agents in Closed-loop
- Authors: Chris Zhang, James Tu, Lunjun Zhang, Kelvin Wong, Simon Suo, Raquel
Urtasun
- Abstract summary: Reinforcement learning (RL) can train traffic agents to avoid infractions, but using RL alone results in unhuman-like driving behaviors.
We propose Reinforcing Traffic Rules (RTR) to match expert demonstrations under a traffic compliance constraint.
Our experiments show that RTR learns more realistic and generalizable traffic simulation policies.
- Score: 36.38063449192355
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Realistic traffic simulation is crucial for developing self-driving software
in a safe and scalable manner prior to real-world deployment. Typically,
imitation learning (IL) is used to learn human-like traffic agents directly
from real-world observations collected offline, but without explicit
specification of traffic rules, agents trained from IL alone frequently display
unrealistic infractions like collisions and driving off the road. This problem
is exacerbated in out-of-distribution and long-tail scenarios. On the other
hand, reinforcement learning (RL) can train traffic agents to avoid
infractions, but using RL alone results in unhuman-like driving behaviors. We
propose Reinforcing Traffic Rules (RTR), a holistic closed-loop learning
objective to match expert demonstrations under a traffic compliance constraint,
which naturally gives rise to a joint IL + RL approach, obtaining the best of
both worlds. Our method learns in closed-loop simulations of both nominal
scenarios from real-world datasets as well as procedurally generated long-tail
scenarios. Our experiments show that RTR learns more realistic and
generalizable traffic simulation policies, achieving significantly better
tradeoffs between human-like driving and traffic compliance in both nominal and
long-tail scenarios. Moreover, when used as a data generation tool for training
prediction models, our learned traffic policy leads to considerably improved
downstream prediction metrics compared to baseline traffic agents. For more
information, visit the project website: https://waabi.ai/rtr
Related papers
- ReGentS: Real-World Safety-Critical Driving Scenario Generation Made Stable [88.08120417169971]
Machine learning based autonomous driving systems often face challenges with safety-critical scenarios that are rare in real-world data.
This work explores generating safety-critical driving scenarios by modifying complex real-world regular scenarios through trajectory optimization.
Our approach addresses unrealistic diverging trajectories and unavoidable collision scenarios that are not useful for training robust planner.
arXiv Detail & Related papers (2024-09-12T08:26:33Z) - A Fully Data-Driven Approach for Realistic Traffic Signal Control Using
Offline Reinforcement Learning [18.2541182874636]
We propose a fully Data-Driven and simulator-free framework for realistic Traffic Signal Control (D2TSC)
We combine well-established traffic flow theory with machine learning to infer the reward signals from coarse-grained traffic data.
Our approach achieves superior performance over conventional and offline RL baselines, and also enjoys much better real-world applicability.
arXiv Detail & Related papers (2023-11-27T15:29:21Z) - Rethinking Closed-loop Training for Autonomous Driving [82.61418945804544]
We present the first empirical study which analyzes the effects of different training benchmark designs on the success of learning agents.
We propose trajectory value learning (TRAVL), an RL-based driving agent that performs planning with multistep look-ahead.
Our experiments show that TRAVL can learn much faster and produce safer maneuvers compared to all the baselines.
arXiv Detail & Related papers (2023-06-27T17:58:39Z) - Exploring the trade off between human driving imitation and safety for
traffic simulation [0.34410212782758043]
We show that a trade-off exists between imitating human driving and maintaining safety when learning driving policies.
We propose a multi objective learning algorithm (MOPPO) that improves both objectives together.
arXiv Detail & Related papers (2022-08-09T14:30:19Z) - Learning Interactive Driving Policies via Data-driven Simulation [125.97811179463542]
Data-driven simulators promise high data-efficiency for driving policy learning.
Small underlying datasets often lack interesting and challenging edge cases for learning interactive driving.
We propose a simulation method that uses in-painted ado vehicles for learning robust driving policies.
arXiv Detail & Related papers (2021-11-23T20:14:02Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
Navigating through intersections is one of the main challenging tasks for an autonomous vehicle.
In this work, we focus on the implementation of a system able to navigate through intersections where only traffic signs are provided.
We propose a multi-agent system using a continuous, model-free Deep Reinforcement Learning algorithm used to train a neural network for predicting both the acceleration and the steering angle at each time step.
arXiv Detail & Related papers (2021-04-28T07:54:40Z) - Learning to Simulate on Sparse Trajectory Data [26.718807213824853]
We present a novel framework ImInGAIL to address the problem of learning to simulate the driving behavior from sparse real-world data.
To the best of our knowledge, we are the first to tackle the data sparsity issue for behavior learning problems.
arXiv Detail & Related papers (2021-03-22T13:42:11Z) - TrafficSim: Learning to Simulate Realistic Multi-Agent Behaviors [74.67698916175614]
We propose TrafficSim, a multi-agent behavior model for realistic traffic simulation.
In particular, we leverage an implicit latent variable model to parameterize a joint actor policy.
We show TrafficSim generates significantly more realistic and diverse traffic scenarios as compared to a diverse set of baselines.
arXiv Detail & Related papers (2021-01-17T00:29:30Z) - Development of A Stochastic Traffic Environment with Generative
Time-Series Models for Improving Generalization Capabilities of Autonomous
Driving Agents [0.0]
We develop a data driven traffic simulator by training a generative adverserial network (GAN) on real life trajectory data.
The simulator generates randomized trajectories that resembles real life traffic interactions between vehicles.
We demonstrate through simulations that RL agents trained on GAN-based traffic simulator has stronger generalization capabilities compared to RL agents trained on simple rule-driven simulators.
arXiv Detail & Related papers (2020-06-10T13:14:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.