論文の概要: FedSN: A Federated Learning Framework over Heterogeneous LEO Satellite Networks
- arxiv url: http://arxiv.org/abs/2311.01483v5
- Date: Fri, 18 Oct 2024 06:38:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-21 14:22:50.331799
- Title: FedSN: A Federated Learning Framework over Heterogeneous LEO Satellite Networks
- Title(参考訳): FedSN: 異種LEO衛星ネットワーク上でのフェデレーション学習フレームワーク
- Authors: Zheng Lin, Zhe Chen, Zihan Fang, Xianhao Chen, Xiong Wang, Yue Gao,
- Abstract要約: 多数の低軌道軌道(LEO)衛星が打ち上げられ、SpaceXなどの商業企業によって宇宙に投入された。
LEO衛星が搭載するマルチモーダルセンサにより、通信だけでなく、空間変調認識やリモートセンシング画像分類など、さまざまな機械学習アプリケーションにも機能する。
本稿では,これらの課題に対処するための一般FLフレームワークとしてFedSNを提案し,LEO衛星上でのデータ多様性について検討する。
- 参考スコア(独自算出の注目度): 18.213174641216884
- License:
- Abstract: Recently, a large number of Low Earth Orbit (LEO) satellites have been launched and deployed successfully in space by commercial companies, such as SpaceX. Due to multimodal sensors equipped by the LEO satellites, they serve not only for communication but also for various machine learning applications, such as space modulation recognition, remote sensing image classification, etc. However, the ground station (GS) may be incapable of downloading such a large volume of raw sensing data for centralized model training due to the limited contact time with LEO satellites (e.g. 5 minutes). Therefore, federated learning (FL) has emerged as the promising solution to address this problem via on-device training. Unfortunately, to enable FL on LEO satellites, we still face three critical challenges that are i) heterogeneous computing and memory capabilities, ii) limited uplink rate, and iii) model staleness. To this end, we propose FedSN as a general FL framework to tackle the above challenges, and fully explore data diversity on LEO satellites. Specifically, we first present a novel sub-structure scheme to enable heterogeneous local model training considering different computing, memory, and communication constraints on LEO satellites. Additionally, we propose a pseudo-synchronous model aggregation strategy to dynamically schedule model aggregation for compensating model staleness. To further demonstrate the effectiveness of the FedSN, we evaluate it using space modulation recognition and remote sensing image classification tasks by leveraging the data from real-world satellite networks. Extensive experimental results demonstrate that FedSN framework achieves higher accuracy, lower computing, and communication overhead than the state-of-the-art benchmarks and the effectiveness of each components in FedSN.
- Abstract(参考訳): 最近、SpaceXなどの商業企業によって、多くの低軌道軌道(LEO)衛星が打ち上げられ、宇宙展開に成功している。
LEO衛星が搭載するマルチモーダルセンサにより、通信だけでなく、空間変調認識やリモートセンシング画像分類など、さまざまな機械学習アプリケーションにも機能する。
しかし、地上局(GS)は、LEO衛星との接触時間(例えば5分)が限られているため、このような大量の生のセンシングデータをダウンロードできない可能性がある。
そのため、デバイス上でのトレーニングを通じてこの問題に対処するための有望なソリューションとして、フェデレートラーニング(FL)が登場している。
残念ながら、LEO衛星でFLを有効にするには、我々は3つの重要な課題に直面している。
一 異種計算及び記憶能力
二 アップリンク率の制限、及び
三 モデル安定度
この目的のために,これらの課題に対処するための一般FLフレームワークとしてFedSNを提案し,LEO衛星上でのデータ多様性について検討する。
具体的には、LEO衛星上の異なる計算、メモリ、通信制約を考慮した異種局所モデルトレーニングを可能にする新しいサブ構造スキームを提案する。
さらに,モデルの安定化を補うために,モデルアグリゲーションを動的にスケジュールする擬似同期モデルアグリゲーション戦略を提案する。
FedSNの有効性をさらに実証するため,実世界の衛星ネットワークからのデータを活用し,空間変調認識とリモートセンシング画像分類タスクを用いて評価を行った。
大規模な実験結果から,FedSNフレームワークは最先端ベンチマークよりも高い精度,低演算,通信オーバヘッドを実現し,FedSNの各コンポーネントの有効性が示された。
関連論文リスト
- A Distance Similarity-based Genetic Optimization Algorithm for Satellite Ground Network Planning Considering Feeding Mode [53.71516191515285]
衛星データ中継ミッションの送信効率の低さは、現在システムの構築を制約している問題となっている。
本研究では,タスク間の状態特性を考慮した距離類似性に基づく遺伝的最適化アルゴリズム(DSGA)を提案し,タスク間の類似性を決定するための重み付きユークリッド距離法を提案する。
論文 参考訳(メタデータ) (2024-08-29T06:57:45Z) - Collaborative Ground-Space Communications via Evolutionary Multi-objective Deep Reinforcement Learning [113.48727062141764]
地中直接通信を実現するために,分散コラボレーティブビームフォーミング(DCB)に基づくアップリンク通信パラダイムを提案する。
DCBは、低軌道(LEO)衛星と効率的な直接接続を確立することができない端末を分散アンテナとして扱う。
本稿では,進化的多目的深層強化学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-04-11T03:13:02Z) - Satellite Federated Edge Learning: Architecture Design and Convergence Analysis [47.057886812985984]
本稿では,FEDMEGAという新しいFEELアルゴリズムを提案する。
軌道内モデルアグリゲーションのための衛星間リンク(ISL)を統合することにより、提案アルゴリズムは低データレートと断続的なGSLの使用を著しく削減する。
提案手法は,環全リデューサに基づく軌道内アグリゲーション機構と,グローバルモデルアグリゲーションのためのネットワークフローベースのトランスミッションスキームを組み合わせたものである。
論文 参考訳(メタデータ) (2024-04-02T11:59:58Z) - Stitching Satellites to the Edge: Pervasive and Efficient Federated LEO Satellite Learning [1.3121410433987561]
本稿では,衛星が大規模機械学習(ML)タスクを効率的に実行できるようにする新しいFL-SECフレームワークを提案する。
主な構成要素は、余分な衛星画像を特定して排除するディビジョン・アンド・コンカーによるパーソナライズドラーニングと、軌道毎に集約された「軌道モデル」を生成し、地上局に送る前に再訓練する軌道モデル再訓練である。
我々のアプローチではFL収束時間が30倍近く減少し、衛星のエネルギー消費は1.38ワットまで減少し、例外的な精度は96%まで維持される。
論文 参考訳(メタデータ) (2024-01-28T02:01:26Z) - Communication-Efficient Federated Learning for LEO Satellite Networks
Integrated with HAPs Using Hybrid NOMA-OFDM [1.3121410433987561]
本稿では,LEO衛星に適した新しいFL-SatComアプローチであるNomaFedHAPを提案する。
NomaFedHAPは高高度プラットフォーム(HAP)を分散パラメータサーバ(PS)として利用し、衛星の可視性を高める。
近距離シェルにおける衛星の停止確率とシステム全体の停止確率のクローズドな表現を導出する。
論文 参考訳(メタデータ) (2024-01-01T07:07:27Z) - Optimizing Federated Learning in LEO Satellite Constellations via
Intra-Plane Model Propagation and Sink Satellite Scheduling [3.096615629099617]
衛星エッジコンピューティング(SEC)は、各衛星がMLモデルをオンボードで訓練し、モデルのみを地上局にアップロードすることを可能にする。
本稿では、既存のFLベースのソリューションの制限(緩やかな収束)を克服する新しいFLフレームワークであるFedLEOを提案する。
以上の結果から,FedLEO は FL の収束を著しく促進するが,実際にモデル精度を大幅に向上させる。
論文 参考訳(メタデータ) (2023-02-27T00:32:01Z) - Federated learning for LEO constellations via inter-HAP links [0.0]
ローアース・オービット(LEO)衛星星座は近年、急速に展開している。
このような応用に機械学習(ML)を適用するには、画像などの衛星データを地上局(GS)にダウンロードする従来の方法は望ましいものではない。
既存のFLソリューションは、過剰収束遅延や信頼できない無線チャネルといった大きな課題のために、そのようなLEOコンステレーションのシナリオには適さないことを示す。
論文 参考訳(メタデータ) (2022-05-15T08:22:52Z) - FedSpace: An Efficient Federated Learning Framework at Satellites and
Ground Stations [10.250105527148731]
低軌道(LEO)衛星の大規模な展開は、大量の地球画像やセンサーデータを収集する。
ダウンリンク帯域の制限、疎結合性、画像解像度の正規化制約のため、高解像度画像をダウンロードし、これらの機械学習モデルを地上で訓練することは不可能であることが多い。
本稿では,地上局と衛星が収集した画像を衛星上で共有することなく,グローバルMLモデルを協調訓練するフェデレートラーニング(FL)を提案する。
論文 参考訳(メタデータ) (2022-02-02T20:09:27Z) - Learning Emergent Random Access Protocol for LEO Satellite Networks [51.575090080749554]
創発的ランダムアクセスチャネルプロトコル(eRACH)と呼ばれるLEO SATネットワークのための新しい許可なしランダムアクセスソリューションを提案する。
eRACHは、非定常ネットワーク環境との相互作用によって生じるモデルフリーなアプローチである。
RACHと比較して,提案するeRACHは平均ネットワークスループットが54.6%向上することを示す。
論文 参考訳(メタデータ) (2021-12-03T07:44:45Z) - Deep Learning Aided Routing for Space-Air-Ground Integrated Networks
Relying on Real Satellite, Flight, and Shipping Data [79.96177511319713]
現在の海上通信は主に単なる送信資源を持つ衛星に依存しており、現代の地上無線ネットワークよりも性能が劣っている。
大陸横断航空輸送の増加に伴い、商業旅客機に依存した航空アドホックネットワークという有望な概念は、空対地およびマルチホップ空対空リンクを介して衛星ベースの海上通信を強化する可能性がある。
低軌道衛星コンステレーション、旅客機、地上基地局、船舶がそれぞれ宇宙、航空、船舶として機能する、ユビキタスな海上通信を支援するための宇宙地上統合ネットワーク(SAGIN)を提案する。
論文 参考訳(メタデータ) (2021-10-28T14:12:10Z) - Integrating LEO Satellite and UAV Relaying via Reinforcement Learning
for Non-Terrestrial Networks [51.05735925326235]
低軌道軌道(LEO)衛星のメガコンステレーションは、低レイテンシで長距離通信を可能にする可能性がある。
軌道上の星座から選択されたLEO衛星を用いて、2つの遠距離地上端末間でパケットを転送する問題について検討する。
エンドツーエンドのデータレートを最大化するためには、衛星アソシエーションとHAPロケーションを最適化する必要がある。
本稿では, 深部強化学習(DRL)と新しい動作次元低減技術を用いてこの問題に対処する。
論文 参考訳(メタデータ) (2020-05-26T05:39:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。