RTP: Rethinking Tensor Parallelism with Memory Deduplication
- URL: http://arxiv.org/abs/2311.01635v1
- Date: Thu, 2 Nov 2023 23:12:42 GMT
- Title: RTP: Rethinking Tensor Parallelism with Memory Deduplication
- Authors: Cheng Luo, Tianle Zhong, Geoffrey Fox
- Abstract summary: Rotated Parallelism (RTP) is an innovative approach that focuses on memory deduplication in distributed training environments.
Our empirical evaluations underscore RTP's efficiency, revealing that its memory consumption during distributed system training is remarkably close to the optimal.
- Score: 3.036340414461332
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the evolving landscape of neural network models, one prominent challenge
stand out: the significant memory overheads associated with training expansive
models. Addressing this challenge, this study delves deep into the Rotated
Tensor Parallelism (RTP). RTP is an innovative approach that strategically
focuses on memory deduplication in distributed training environments. It boasts
of unique features like a customized communication primitive and the Flyweight
Pattern initialization. Furthermore, RTP ensures a seamless overlap between
partition computation and partition weight communication, optimizing the
training process. Our empirical evaluations underscore RTP's efficiency,
revealing that its memory consumption during distributed system training is
remarkably close to the optimal - distributing the memory overhead of a single
machine equitably among multiple machines. The experimental results demonstrate
that RTP is capable of achieving comparable performance to Distributed Data
Parallel while providing support for significantly larger models with
near-linear scalability in terms of memory. Code of RTP is available at
https://github.com/wdlctc/rtp.
Related papers
- SHERL: Synthesizing High Accuracy and Efficient Memory for Resource-Limited Transfer Learning [63.93193829913252]
We propose an innovative METL strategy called SHERL for resource-limited scenarios.
In the early route, intermediate outputs are consolidated via an anti-redundancy operation.
In the late route, utilizing minimal late pre-trained layers could alleviate the peak demand on memory overhead.
arXiv Detail & Related papers (2024-07-10T10:22:35Z) - Partitioned Neural Network Training via Synthetic Intermediate Labels [0.0]
GPU memory constraints have become a notable bottleneck in training such sizable models.
This study advocates partitioning the model across GPU and generating synthetic intermediate labels to train individual segments.
This approach results in a more efficient training process that minimizes data communication while maintaining model accuracy.
arXiv Detail & Related papers (2024-03-17T13:06:29Z) - Transforming Image Super-Resolution: A ConvFormer-based Efficient Approach [58.57026686186709]
We introduce the Convolutional Transformer layer (ConvFormer) and propose a ConvFormer-based Super-Resolution network (CFSR)
CFSR inherits the advantages of both convolution-based and transformer-based approaches.
Experiments demonstrate that CFSR strikes an optimal balance between computational cost and performance.
arXiv Detail & Related papers (2024-01-11T03:08:00Z) - UniPT: Universal Parallel Tuning for Transfer Learning with Efficient
Parameter and Memory [69.33445217944029]
PETL is an effective strategy for adapting pre-trained models to downstream domains.
Recent PETL works focus on the more valuable memory-efficient characteristic.
We propose a new memory-efficient PETL strategy, Universal Parallel Tuning (UniPT)
arXiv Detail & Related papers (2023-08-28T05:38:43Z) - Towards a Better Theoretical Understanding of Independent Subnetwork Training [56.24689348875711]
We take a closer theoretical look at Independent Subnetwork Training (IST)
IST is a recently proposed and highly effective technique for solving the aforementioned problems.
We identify fundamental differences between IST and alternative approaches, such as distributed methods with compressed communication.
arXiv Detail & Related papers (2023-06-28T18:14:22Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
Image super-resolution (SR) has witnessed extensive neural network designs from CNN to transformer architectures.
This work investigates the potential of network pruning for super-resolution iteration to take advantage of off-the-shelf network designs and reduce the underlying computational overhead.
We propose a novel Iterative Soft Shrinkage-Percentage (ISS-P) method by optimizing the sparse structure of a randomly network at each and tweaking unimportant weights with a small amount proportional to the magnitude scale on-the-fly.
arXiv Detail & Related papers (2023-03-16T21:06:13Z) - Efficient Parametric Approximations of Neural Network Function Space
Distance [6.117371161379209]
It is often useful to compactly summarize important properties of model parameters and training data so that they can be used later without storing and/or iterating over the entire dataset.
We consider estimating the Function Space Distance (FSD) over a training set, i.e. the average discrepancy between the outputs of two neural networks.
We propose a Linearized Activation TRick (LAFTR) and derive an efficient approximation to FSD for ReLU neural networks.
arXiv Detail & Related papers (2023-02-07T15:09:23Z) - DistIR: An Intermediate Representation and Simulator for Efficient
Neural Network Distribution [15.086401550425125]
DistIR is a representation for distributed computation that is tailored for efficient analyses.
We show how DistIR and its simulator enable fast grid searches over complex distribution spaces spanning up to 1000+ configurations.
arXiv Detail & Related papers (2021-11-09T21:32:51Z) - Understanding the Effects of Data Parallelism and Sparsity on Neural
Network Training [126.49572353148262]
We study two factors in neural network training: data parallelism and sparsity.
Despite their promising benefits, understanding of their effects on neural network training remains elusive.
arXiv Detail & Related papers (2020-03-25T10:49:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.