Two-dimensional Sparse Parallelism for Large Scale Deep Learning Recommendation Model Training
- URL: http://arxiv.org/abs/2508.03854v1
- Date: Tue, 05 Aug 2025 19:12:18 GMT
- Title: Two-dimensional Sparse Parallelism for Large Scale Deep Learning Recommendation Model Training
- Authors: Xin Zhang, Quanyu Zhu, Liangbei Xu, Zain Huda, Wang Zhou, Jin Fang, Dennis van der Staay, Yuxi Hu, Jade Nie, Jiyan Yang, Chunzhi Yang,
- Abstract summary: In deep learning recommendation models (DLRM), the sparse embedding table is a crucial component for managing sparse categorical features.<n>We propose a novel two-dimensional sparse parallelism approach to overcome scalability challenges.<n>We show that the proposed approach significantly enhances training efficiency while maintaining model performance parity.
- Score: 9.47829333855806
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The increasing complexity of deep learning recommendation models (DLRM) has led to a growing need for large-scale distributed systems that can efficiently train vast amounts of data. In DLRM, the sparse embedding table is a crucial component for managing sparse categorical features. Typically, these tables in industrial DLRMs contain trillions of parameters, necessitating model parallelism strategies to address memory constraints. However, as training systems expand with massive GPUs, the traditional fully parallelism strategies for embedding table post significant scalability challenges, including imbalance and straggler issues, intensive lookup communication, and heavy embedding activation memory. To overcome these limitations, we propose a novel two-dimensional sparse parallelism approach. Rather than fully sharding tables across all GPUs, our solution introduces data parallelism on top of model parallelism. This enables efficient all-to-all communication and reduces peak memory consumption. Additionally, we have developed the momentum-scaled row-wise AdaGrad algorithm to mitigate performance losses associated with the shift in training paradigms. Our extensive experiments demonstrate that the proposed approach significantly enhances training efficiency while maintaining model performance parity. It achieves nearly linear training speed scaling up to 4K GPUs, setting a new state-of-the-art benchmark for recommendation model training.
Related papers
- Protocol Models: Scaling Decentralized Training with Communication-Efficient Model Parallelism [59.79227116582264]
Scaling models has led to significant advancements in deep learning, but training these models in decentralized settings remains challenging.<n>We propose a novel compression algorithm that compresses both forward and backward passes, enabling up to 99% compression with no convergence degradation.
arXiv Detail & Related papers (2025-06-02T02:19:22Z) - MoE Parallel Folding: Heterogeneous Parallelism Mappings for Efficient Large-Scale MoE Model Training with Megatron Core [11.40633051522406]
We introduce an end-to-end training framework for large-scale MoE models.<n>MoE Parallel Folding is a novel strategy that decouples the parallelization of attention and MoE in Transformer models.<n>A flexible token-level dispatcher supports both token-dropping and token-dropless MoE training.
arXiv Detail & Related papers (2025-04-21T08:39:47Z) - Partitioned Neural Network Training via Synthetic Intermediate Labels [0.0]
GPU memory constraints have become a notable bottleneck in training such sizable models.<n>This study advocates partitioning the model across GPU and generating synthetic intermediate labels to train individual segments.<n>This approach results in a more efficient training process that minimizes data communication while maintaining model accuracy.
arXiv Detail & Related papers (2024-03-17T13:06:29Z) - Towards a Better Theoretical Understanding of Independent Subnetwork Training [56.24689348875711]
We take a closer theoretical look at Independent Subnetwork Training (IST)
IST is a recently proposed and highly effective technique for solving the aforementioned problems.
We identify fundamental differences between IST and alternative approaches, such as distributed methods with compressed communication.
arXiv Detail & Related papers (2023-06-28T18:14:22Z) - In Situ Framework for Coupling Simulation and Machine Learning with
Application to CFD [51.04126395480625]
Recent years have seen many successful applications of machine learning (ML) to facilitate fluid dynamic computations.
As simulations grow, generating new training datasets for traditional offline learning creates I/O and storage bottlenecks.
This work offers a solution by simplifying this coupling and enabling in situ training and inference on heterogeneous clusters.
arXiv Detail & Related papers (2023-06-22T14:07:54Z) - SWARM Parallelism: Training Large Models Can Be Surprisingly
Communication-Efficient [69.61083127540776]
Deep learning applications benefit from using large models with billions of parameters.
Training these models is notoriously expensive due to the need for specialized HPC clusters.
We consider alternative setups for training large models: using cheap "preemptible" instances or pooling existing resources from multiple regions.
arXiv Detail & Related papers (2023-01-27T18:55:19Z) - SplitBrain: Hybrid Data and Model Parallel Deep Learning [11.63431725146897]
This paper presents SplitBrain, a high performance distributed deep learning framework supporting hybrid data and model parallelism.
Specifically, SplitBrain provides layer-specific partitioning that co-locates compute intensive convolutional layers while sharding memory demanding layers.
Results show that SplitBrain can achieve nearly linear speedup while saving up to 67% of memory consumption for data and model parallel VGG over CIFAR-10.
arXiv Detail & Related papers (2021-12-31T06:25:38Z) - Colossal-AI: A Unified Deep Learning System For Large-Scale Parallel
Training [23.633810934134065]
Colossal-AI can achieve up to 2.76 times training speedup on large-scale models.
System supports parallel training methods such as data, pipeline, tensor, and sequence parallelism.
arXiv Detail & Related papers (2021-10-28T04:45:55Z) - Parallel Training of Deep Networks with Local Updates [84.30918922367442]
Local parallelism is a framework which parallelizes training of individual layers in deep networks by replacing global backpropagation with truncated layer-wise backpropagation.
We show results in both vision and language domains across a diverse set of architectures, and find that local parallelism is particularly effective in the high-compute regime.
arXiv Detail & Related papers (2020-12-07T16:38:45Z) - Scaling Distributed Deep Learning Workloads beyond the Memory Capacity
with KARMA [58.040931661693925]
We propose a strategy that combines redundant recomputing and out-of-core methods.
We achieve an average of 1.52x speedup in six different models over the state-of-the-art out-of-core methods.
Our data parallel out-of-core solution can outperform complex hybrid model parallelism in training large models, e.g. Megatron-LM and Turning-NLG.
arXiv Detail & Related papers (2020-08-26T07:24:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.