論文の概要: Using DUCK-Net for Polyp Image Segmentation
- arxiv url: http://arxiv.org/abs/2311.02239v1
- Date: Fri, 3 Nov 2023 20:58:44 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-07 18:45:09.479547
- Title: Using DUCK-Net for Polyp Image Segmentation
- Title(参考訳): Polyp Image Segmentation におけるDUCK-Net の利用
- Authors: Razvan-Gabriel Dumitru, Darius Peteleaza, Catalin Craciun
- Abstract要約: DUCK-Netは、少量の医療画像から効果的に学習し、一般化し、正確なセグメンテーションタスクを実行することができる。
大腸内視鏡画像におけるポリープセグメンテーションに特有な機能を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a novel supervised convolutional neural network
architecture, "DUCK-Net", capable of effectively learning and generalizing from
small amounts of medical images to perform accurate segmentation tasks. Our
model utilizes an encoder-decoder structure with a residual downsampling
mechanism and a custom convolutional block to capture and process image
information at multiple resolutions in the encoder segment. We employ data
augmentation techniques to enrich the training set, thus increasing our model's
performance. While our architecture is versatile and applicable to various
segmentation tasks, in this study, we demonstrate its capabilities specifically
for polyp segmentation in colonoscopy images. We evaluate the performance of
our method on several popular benchmark datasets for polyp segmentation,
Kvasir-SEG, CVC-ClinicDB, CVC-ColonDB, and ETIS-LARIBPOLYPDB showing that it
achieves state-of-the-art results in terms of mean Dice coefficient, Jaccard
index, Precision, Recall, and Accuracy. Our approach demonstrates strong
generalization capabilities, achieving excellent performance even with limited
training data. The code is publicly available on GitHub:
https://github.com/RazvanDu/DUCK-Net
- Abstract(参考訳): 本稿では,少数の医用画像から効果的に学習し,正確なセグメンテーション作業を行うことのできる,新しい教師付き畳み込みニューラルネットワークアーキテクチャ "DUCK-Net" を提案する。
本モデルでは、残差ダウンサンプリング機構とカスタム畳み込みブロックを有するエンコーダ・デコーダ構造を用いて、エンコーダセグメント内の複数の解像度で画像情報をキャプチャおよび処理する。
トレーニングセットを強化するために、データ拡張技術を採用し、モデルのパフォーマンスを高めています。
本研究は,大腸内視鏡画像におけるポリープセグメンテーションに特有な機能を示す。
我々は, ポリプセグメンテーション, Kvasir-SEG, CVC-ClinicDB, CVC-ColonDB, ETIS-LARIBPOLYPDBのベンチマークデータを用いて, 平均Dice係数, Jaccard指数, 精度, リコール, 精度の両面から, 最先端の結果が得られることを示す。
本手法は,限られたトレーニングデータでも優れた性能を実現するための強汎化能力を示す。
コードはGitHubで公開されている。 https://github.com/RazvanDu/DUCK-Net
関連論文リスト
- Early Fusion of Features for Semantic Segmentation [10.362589129094975]
本稿では,効率的な画像分割を実現するために,分類器ネットワークとリバースHRNetアーキテクチャを統合する新しいセグメンテーションフレームワークを提案する。
私たちの手法は、Mapillary Vistas、Cityscapes、CamVid、COCO、PASCAL-VOC2012など、いくつかのベンチマークデータセットで厳格にテストされています。
その結果,画像解析における様々な応用の可能性を示し,高いセグメンテーション精度を実現する上で,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2024-02-08T22:58:06Z) - Distilling Ensemble of Explanations for Weakly-Supervised Pre-Training
of Image Segmentation Models [54.49581189337848]
本稿では,分類データセットに基づく画像分割モデルのエンドツーエンド事前学習を可能にする手法を提案する。
提案手法は重み付きセグメンテーション学習法を利用して,重み付きセグメンテーションネットワークを事前訓練する。
実験の結果,ImageNetにソースデータセットとしてPSSLを伴って提案されたエンドツーエンドの事前トレーニング戦略が,さまざまなセグメンテーションモデルの性能向上に成功していることがわかった。
論文 参考訳(メタデータ) (2022-07-04T13:02:32Z) - ColonFormer: An Efficient Transformer based Method for Colon Polyp
Segmentation [1.181206257787103]
ColonFormer はエンコーダとデコーダのアーキテクチャで、長距離セマンティック情報をモデル化できる。
ColonFormerは、すべてのベンチマークデータセットで最先端のパフォーマンスを実現しています。
論文 参考訳(メタデータ) (2022-05-17T16:34:04Z) - Deep ensembles in bioimage segmentation [74.01883650587321]
本研究では,畳み込みニューラルネットワーク(CNN)のアンサンブルを提案する。
アンサンブル法では、多くの異なるモデルが訓練され、分類に使用され、アンサンブルは単一分類器の出力を集約する。
提案するアンサンブルは,DeepLabV3+とHarDNet環境を用いて,異なるバックボーンネットワークを組み合わせることで実現されている。
論文 参考訳(メタデータ) (2021-12-24T05:54:21Z) - CSC-Unet: A Novel Convolutional Sparse Coding Strategy Based Neural
Network for Semantic Segmentation [0.44289311505645573]
本稿では,一般的な畳み込み操作を多層畳み込み符号化ブロックに書き換える新しい戦略を提案する。
多層畳み込みスパース符号化ブロックは,セマンティックセグメンテーションモデルをより高速に収束させ,画像のより微細なセマンティックおよび外観情報を抽出し,空間的詳細情報を復元する能力を向上させることができることを示す。
論文 参考訳(メタデータ) (2021-08-01T09:16:31Z) - Deep ensembles based on Stochastic Activation Selection for Polyp
Segmentation [82.61182037130406]
本研究は,大腸内視鏡検査における画像分割,特に正確なポリープ検出とセグメンテーションを扱う。
イメージセグメンテーションの基本アーキテクチャはエンコーダとデコーダで構成されている。
我々はデコーダのバックボーンを変更することで得られるDeepLabアーキテクチャのバリエーションを比較した。
論文 参考訳(メタデータ) (2021-04-02T02:07:37Z) - A Holistically-Guided Decoder for Deep Representation Learning with
Applications to Semantic Segmentation and Object Detection [74.88284082187462]
一般的な戦略の1つは、バックボーンネットワークに拡張畳み込みを採用し、高解像度のフィーチャーマップを抽出することです。
本稿では,高分解能なセマンティクスリッチな特徴マップを得るために紹介される,新たなホリスティック誘導デコーダを提案する。
論文 参考訳(メタデータ) (2020-12-18T10:51:49Z) - Group-Wise Semantic Mining for Weakly Supervised Semantic Segmentation [49.90178055521207]
この研究は、画像レベルのアノテーションとピクセルレベルのセグメンテーションのギャップを埋めることを目標に、弱い監督されたセマンティックセグメンテーション(WSSS)に対処する。
画像群における意味的依存関係を明示的にモデル化し,より信頼性の高い擬似的基盤構造を推定する,新たなグループ学習タスクとしてWSSSを定式化する。
特に、入力画像がグラフノードとして表現されるグループ単位のセマンティックマイニングのためのグラフニューラルネットワーク(GNN)を考案する。
論文 参考訳(メタデータ) (2020-12-09T12:40:13Z) - KiU-Net: Overcomplete Convolutional Architectures for Biomedical Image
and Volumetric Segmentation [71.79090083883403]
トラディショナル・エンコーダ・デコーダに基づく手法は, より小さな構造を検出でき, 境界領域を正確に分割できない。
本稿では,(1)入力の細部と正確なエッジを捉えることを学ぶ完全畳み込みネットワークKite-Netと,(2)高レベルの特徴を学習するU-Netの2つの枝を持つKiU-Netを提案する。
提案手法は,より少ないパラメータとより高速な収束の利点により,最近のすべての手法と比較して性能が向上する。
論文 参考訳(メタデータ) (2020-10-04T19:23:33Z) - Semantic Segmentation With Multi Scale Spatial Attention For Self
Driving Cars [2.7317088388886384]
本稿では,様々なスケールのマルチスケール特徴融合を用いた新しいニューラルネットワークを提案し,その精度と効率的なセマンティックイメージセグメンテーションを提案する。
我々は、ResNetベースの特徴抽出器、ダウンサンプリング部における拡張畳み込み層、アップサンプリング部におけるアトラス畳み込み層を使用し、コンキャット操作を用いてそれらをマージした。
より文脈的な情報をエンコードし、ネットワークの受容領域を強化するため、新しいアテンションモジュールが提案されている。
論文 参考訳(メタデータ) (2020-06-30T20:19:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。