論文の概要: Early Fusion of Features for Semantic Segmentation
- arxiv url: http://arxiv.org/abs/2402.06091v1
- Date: Thu, 8 Feb 2024 22:58:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-12 18:30:16.750678
- Title: Early Fusion of Features for Semantic Segmentation
- Title(参考訳): セマンティックセグメンテーションのための特徴の早期融合
- Authors: Anupam Gupta, Ashok Krishnamurthy, Lisa Singh
- Abstract要約: 本稿では,効率的な画像分割を実現するために,分類器ネットワークとリバースHRNetアーキテクチャを統合する新しいセグメンテーションフレームワークを提案する。
私たちの手法は、Mapillary Vistas、Cityscapes、CamVid、COCO、PASCAL-VOC2012など、いくつかのベンチマークデータセットで厳格にテストされています。
その結果,画像解析における様々な応用の可能性を示し,高いセグメンテーション精度を実現する上で,提案手法の有効性が示された。
- 参考スコア(独自算出の注目度): 10.362589129094975
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper introduces a novel segmentation framework that integrates a
classifier network with a reverse HRNet architecture for efficient image
segmentation. Our approach utilizes a ResNet-50 backbone, pretrained in a
semi-supervised manner, to generate feature maps at various scales. These maps
are then processed by a reverse HRNet, which is adapted to handle varying
channel dimensions through 1x1 convolutions, to produce the final segmentation
output. We strategically avoid fine-tuning the backbone network to minimize
memory consumption during training. Our methodology is rigorously tested across
several benchmark datasets including Mapillary Vistas, Cityscapes, CamVid,
COCO, and PASCAL-VOC2012, employing metrics such as pixel accuracy and mean
Intersection over Union (mIoU) to evaluate segmentation performance. The
results demonstrate the effectiveness of our proposed model in achieving high
segmentation accuracy, indicating its potential for various applications in
image analysis. By leveraging the strengths of both the ResNet-50 and reverse
HRNet within a unified framework, we present a robust solution to the
challenges of image segmentation.
- Abstract(参考訳): 本稿では,効率的な画像分割を実現するために,分類器ネットワークとリバースHRNetアーキテクチャを統合する新しいセグメンテーションフレームワークを提案する。
提案手法では,ResNet-50バックボーンを半教師付きで事前訓練し,様々なスケールで特徴マップを生成する。
これらのマップは逆hrnetによって処理され、1x1畳み込みを通じて様々なチャネル次元を扱うように適応され、最終的なセグメンテーション出力を生成する。
トレーニング中のメモリ消費を最小限に抑えるため,バックボーンネットワークの微調整を戦略的に避ける。
提案手法は,Mapillary Vistas,Cityscapes,CamVid,COCO,PASCAL-VOC2012など,いくつかのベンチマークデータセットで厳格に検証され,画素精度や平均インターセクションオーバーユニオン(mIoU)などの指標を用いてセグメンテーション性能を評価する。
その結果,提案モデルの有効性が示され,画像解析における各種応用の可能性が示唆された。
ResNet-50とリバースHRNetの長所を統一されたフレームワークで活用することにより、画像セグメンテーションの課題に対する堅牢な解決策を提供する。
関連論文リスト
- UnSeGArmaNet: Unsupervised Image Segmentation using Graph Neural Networks with Convolutional ARMA Filters [10.940349832919699]
事前学習したViTを用いた教師なしセグメンテーションフレームワークを提案する。
画像内に固有のグラフ構造を利用することにより,セグメント化における顕著な性能を実現する。
提案手法は,ベンチマーク画像セグメンテーションデータセット上での最先端性能(教師付き手法に匹敵する)を提供する。
論文 参考訳(メタデータ) (2024-10-08T15:10:09Z) - CRCNet: Few-shot Segmentation with Cross-Reference and Region-Global
Conditional Networks [59.85183776573642]
少ないショットセグメンテーションは、少数のトレーニングイメージを持つ新しいクラスに一般化できるセグメンテーションモデルを学ぶことを目的としている。
複数ショットセグメンテーションのためのクロスリファレンス・ローカル・グローバル・ネットワーク(CRCNet)を提案する。
我々のネットワークは、相互参照機構により、2つの画像に共起する物体をよりよく見つけることができる。
論文 参考訳(メタデータ) (2022-08-23T06:46:18Z) - SCNet: Enhancing Few-Shot Semantic Segmentation by Self-Contrastive
Background Prototypes [56.387647750094466]
Few-shot セマンティックセマンティックセマンティクスは,クエリイメージ内の新規クラスオブジェクトを,アノテーション付きの例で分割することを目的としている。
先進的なソリューションのほとんどは、各ピクセルを学習した前景のプロトタイプに合わせることでセグメンテーションを行うメトリクス学習フレームワークを利用している。
このフレームワークは、前景プロトタイプのみとのサンプルペアの不完全な構築のために偏った分類に苦しんでいます。
論文 参考訳(メタデータ) (2021-04-19T11:21:47Z) - Boundary-Aware Segmentation Network for Mobile and Web Applications [60.815545591314915]
境界認識ネットワーク(basnet)は、精度の高い画像分割のための予測再定義アーキテクチャとハイブリッド損失と統合されている。
basnetは単一のgpu上で70fps以上動作し、多くの潜在的なアプリケーションが利用できる。
BASNetをベースに、BASNetが「COPY」と「PASTING」現実世界のオブジェクトのための拡張現実であるAR COPY & PASTEと、オブジェクト背景の自動削除のためのWebベースのツールであるOBJECT CUTの2つの(近い)商用アプリケーションをさらに開発しました。
論文 参考訳(メタデータ) (2021-01-12T19:20:26Z) - Group-Wise Semantic Mining for Weakly Supervised Semantic Segmentation [49.90178055521207]
この研究は、画像レベルのアノテーションとピクセルレベルのセグメンテーションのギャップを埋めることを目標に、弱い監督されたセマンティックセグメンテーション(WSSS)に対処する。
画像群における意味的依存関係を明示的にモデル化し,より信頼性の高い擬似的基盤構造を推定する,新たなグループ学習タスクとしてWSSSを定式化する。
特に、入力画像がグラフノードとして表現されるグループ単位のセマンティックマイニングのためのグラフニューラルネットワーク(GNN)を考案する。
論文 参考訳(メタデータ) (2020-12-09T12:40:13Z) - SCG-Net: Self-Constructing Graph Neural Networks for Semantic
Segmentation [23.623276007011373]
本稿では,画像から直接長距離依存グラフを学習し,コンテキスト情報を効率的に伝達するモジュールを提案する。
モジュールは、新しい適応対角法と変分下界により最適化される。
ニューラルネットワーク(SCG-Net)に組み込まれると、セマンティックセグメンテーションがエンドツーエンドで行われ、競争性能が向上する。
論文 参考訳(メタデータ) (2020-09-03T12:13:09Z) - Pairwise Relation Learning for Semi-supervised Gland Segmentation [90.45303394358493]
病理組織像における腺分節に対するPRS2モデルを提案する。
このモデルはセグメンテーションネットワーク(S-Net)とペア関係ネットワーク(PR-Net)から構成される。
我々は,GlaSデータセットの最近の5つの手法とCRAGデータセットの最近の3つの手法を比較した。
論文 参考訳(メタデータ) (2020-08-06T15:02:38Z) - Semantic Segmentation With Multi Scale Spatial Attention For Self
Driving Cars [2.7317088388886384]
本稿では,様々なスケールのマルチスケール特徴融合を用いた新しいニューラルネットワークを提案し,その精度と効率的なセマンティックイメージセグメンテーションを提案する。
我々は、ResNetベースの特徴抽出器、ダウンサンプリング部における拡張畳み込み層、アップサンプリング部におけるアトラス畳み込み層を使用し、コンキャット操作を用いてそれらをマージした。
より文脈的な情報をエンコードし、ネットワークの受容領域を強化するため、新しいアテンションモジュールが提案されている。
論文 参考訳(メタデータ) (2020-06-30T20:19:09Z) - CRNet: Cross-Reference Networks for Few-Shot Segmentation [59.85183776573642]
少ないショットセグメンテーションは、少数のトレーニングイメージを持つ新しいクラスに一般化できるセグメンテーションモデルを学ぶことを目的としている。
相互参照機構により、我々のネットワークは2つの画像に共起する物体をよりよく見つけることができる。
PASCAL VOC 2012データセットの実験は、我々のネットワークが最先端のパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2020-03-24T04:55:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。