Image Recognition of Oil Leakage Area Based on Logical Semantic
Discrimination
- URL: http://arxiv.org/abs/2311.02256v2
- Date: Fri, 17 Nov 2023 06:58:21 GMT
- Title: Image Recognition of Oil Leakage Area Based on Logical Semantic
Discrimination
- Authors: Weiying Lin, Che Liu, Xin Zhang, Zhen Wei, Sizhe Li, Xun Ma
- Abstract summary: The integration of logical rule-based discrimination into image recognition has been proposed.
This approach involves recognizing the spatial relationships among objects to semantically segment images of oil spills.
The results indicate that this approach can adeptly tackle the challenges in identifying oil-contaminated areas.
- Score: 11.792559057876693
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Implementing precise detection of oil leaks in peak load equipment through
image analysis can significantly enhance inspection quality and ensure the
system's safety and reliability. However, challenges such as varying shapes of
oil-stained regions, background noise, and fluctuating lighting conditions
complicate the detection process. To address this, the integration of logical
rule-based discrimination into image recognition has been proposed. This
approach involves recognizing the spatial relationships among objects to
semantically segment images of oil spills using a Mask RCNN network. The
process begins with histogram equalization to enhance the original image,
followed by the use of Mask RCNN to identify the preliminary positions and
outlines of oil tanks, the ground, and areas of potential oil contamination.
Subsequent to this identification, the spatial relationships between these
objects are analyzed. Logical rules are then applied to ascertain whether the
suspected areas are indeed oil spills. This method's effectiveness has been
confirmed by testing on images captured from peak power equipment in the field.
The results indicate that this approach can adeptly tackle the challenges in
identifying oil-contaminated areas, showing a substantial improvement in
accuracy compared to existing methods.
Related papers
- LADMIM: Logical Anomaly Detection with Masked Image Modeling in Discrete Latent Space [0.0]
Masked image modeling is a self-supervised learning technique that predicts the feature representation of masked regions in an image.
We propose a novel approach that leverages the characteristics of MIM to detect logical anomalies effectively.
We evaluate the proposed method on the MVTecLOCO dataset, achieving an average AUC of 0.867.
arXiv Detail & Related papers (2024-10-14T07:50:56Z) - FlowSDF: Flow Matching for Medical Image Segmentation Using Distance Transforms [60.195642571004804]
We propose FlowSDF, an image-guided conditional flow matching framework to represent the signed distance function (SDF)
By learning a vector field that is directly related to the probability path of a conditional distribution of SDFs, we can accurately sample from the distribution of segmentation masks.
arXiv Detail & Related papers (2024-05-28T11:47:12Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - DeepFidelity: Perceptual Forgery Fidelity Assessment for Deepfake
Detection [67.3143177137102]
Deepfake detection refers to detecting artificially generated or edited faces in images or videos.
We propose a novel Deepfake detection framework named DeepFidelity to adaptively distinguish real and fake faces.
arXiv Detail & Related papers (2023-12-07T07:19:45Z) - Unsupervised Wildfire Change Detection based on Contrastive Learning [1.53934570513443]
The accurate characterization of the severity of the wildfire event contributes to the characterization of the fuel conditions in fire-prone areas.
The aim of this study is to develop an autonomous system built on top of high-resolution multispectral satellite imagery, with an advanced deep learning method for detecting burned area change.
arXiv Detail & Related papers (2022-11-26T20:13:14Z) - Hyperspectral Remote Sensing Benchmark Database for Oil Spill Detection
with an Isolation Forest-Guided Unsupervised Detector [13.739881592455044]
Oil spill detection has attracted increasing attention in recent years since marine oil spill accidents severely affect environments, natural resources, and the lives of coastal inhabitants.
Most of the existing approaches are based on supervised and semi-supervised frameworks to detect oil spills from hyperspectral images (HSIs)
In this study, we make the first attempt to develop an unsupervised oil spill detection method based on isolation forest for HSIs.
arXiv Detail & Related papers (2022-09-28T02:26:42Z) - Oil Spill SAR Image Segmentation via Probability Distribution Modelling [18.72207562693259]
This work aims to develop an effective segmentation method which addresses marine oil spill identification in SAR images.
We revisit the SAR imaging mechanism in order to attain the probability distribution representation of oil spill SAR images.
We then exploit the distribution representation to formulate the segmentation energy functional, by which oil spill characteristics are incorporated.
arXiv Detail & Related papers (2021-12-17T17:22:29Z) - Detect and Locate: A Face Anti-Manipulation Approach with Semantic and
Noise-level Supervision [67.73180660609844]
We propose a conceptually simple but effective method to efficiently detect forged faces in an image.
The proposed scheme relies on a segmentation map that delivers meaningful high-level semantic information clues about the image.
The proposed model achieves state-of-the-art detection accuracy and remarkable localization performance.
arXiv Detail & Related papers (2021-07-13T02:59:31Z) - Spatial-Phase Shallow Learning: Rethinking Face Forgery Detection in
Frequency Domain [88.7339322596758]
We present a novel Spatial-Phase Shallow Learning (SPSL) method, which combines spatial image and phase spectrum to capture the up-sampling artifacts of face forgery.
SPSL can achieve the state-of-the-art performance on cross-datasets evaluation as well as multi-class classification and obtain comparable results on single dataset evaluation.
arXiv Detail & Related papers (2021-03-02T16:45:08Z) - DeepFake Detection Based on the Discrepancy Between the Face and its
Context [94.47879216590813]
We propose a method for detecting face swapping and other identity manipulations in single images.
Our approach involves two networks: (i) a face identification network that considers the face region bounded by a tight semantic segmentation, and (ii) a context recognition network that considers the face context.
We describe a method which uses the recognition signals from our two networks to detect such discrepancies.
Our method achieves state of the art results on the FaceForensics++, Celeb-DF-v2, and DFDC benchmarks for face manipulation detection, and even generalizes to detect fakes produced by unseen methods.
arXiv Detail & Related papers (2020-08-27T17:04:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.