LampMark: Proactive Deepfake Detection via Training-Free Landmark Perceptual Watermarks
- URL: http://arxiv.org/abs/2411.17209v1
- Date: Tue, 26 Nov 2024 08:24:56 GMT
- Title: LampMark: Proactive Deepfake Detection via Training-Free Landmark Perceptual Watermarks
- Authors: Tianyi Wang, Mengxiao Huang, Harry Cheng, Xiao Zhang, Zhiqi Shen,
- Abstract summary: This paper introduces a novel training-free landmark perceptual watermark, LampMark for short.
We first analyze the structure-sensitive characteristics of Deepfake manipulations and devise a secure and confidential transformation pipeline.
We present an end-to-end watermarking framework that imperceptibly embeds and extracts watermarks concerning the images to be protected.
- Score: 7.965986856780787
- License:
- Abstract: Deepfake facial manipulation has garnered significant public attention due to its impacts on enhancing human experiences and posing privacy threats. Despite numerous passive algorithms that have been attempted to thwart malicious Deepfake attacks, they mostly struggle with the generalizability challenge when confronted with hyper-realistic synthetic facial images. To tackle the problem, this paper proposes a proactive Deepfake detection approach by introducing a novel training-free landmark perceptual watermark, LampMark for short. We first analyze the structure-sensitive characteristics of Deepfake manipulations and devise a secure and confidential transformation pipeline from the structural representations, i.e. facial landmarks, to binary landmark perceptual watermarks. Subsequently, we present an end-to-end watermarking framework that imperceptibly and robustly embeds and extracts watermarks concerning the images to be protected. Relying on promising watermark recovery accuracies, Deepfake detection is accomplished by assessing the consistency between the content-matched landmark perceptual watermark and the robustly recovered watermark of the suspect image. Experimental results demonstrate the superior performance of our approach in watermark recovery and Deepfake detection compared to state-of-the-art methods across in-dataset, cross-dataset, and cross-manipulation scenarios.
Related papers
- Facial Features Matter: a Dynamic Watermark based Proactive Deepfake Detection Approach [11.51480331713537]
This paper proposes a Facial Feature-based Proactive deepfake detection method (FaceProtect)
We introduce a GAN-based One-way Dynamic Watermark Generating Mechanism (GODWGM) that uses 128-dimensional facial feature vectors as inputs.
We also propose a Watermark-based Verification Strategy (WVS) that combines steganography with GODWGM, allowing simultaneous transmission of the benchmark watermark.
arXiv Detail & Related papers (2024-11-22T08:49:08Z) - Social Media Authentication and Combating Deepfakes using Semi-fragile Invisible Image Watermarking [6.246098300155482]
We propose a semi-fragile image watermarking technique that embeds an invisible secret message into real images for media authentication.
Our proposed framework is designed to be fragile to facial manipulations or tampering while being robust to benign image-processing operations and watermark removal attacks.
arXiv Detail & Related papers (2024-10-02T18:05:03Z) - Are Watermarks Bugs for Deepfake Detectors? Rethinking Proactive Forensics [14.596038695008403]
We argue that current watermarking models, originally devised for genuine images, may harm the deployed Deepfake detectors when directly applied to forged images.
We propose AdvMark, on behalf of proactive forensics, to exploit the adversarial vulnerability of passive detectors for good.
arXiv Detail & Related papers (2024-04-27T11:20:49Z) - WAVES: Benchmarking the Robustness of Image Watermarks [67.955140223443]
WAVES (Watermark Analysis Via Enhanced Stress-testing) is a benchmark for assessing image watermark robustness.
We integrate detection and identification tasks and establish a standardized evaluation protocol comprised of a diverse range of stress tests.
We envision WAVES as a toolkit for the future development of robust watermarks.
arXiv Detail & Related papers (2024-01-16T18:58:36Z) - Removing Interference and Recovering Content Imaginatively for Visible
Watermark Removal [63.576748565274706]
This study introduces the Removing Interference and Recovering Content Imaginatively (RIRCI) framework.
RIRCI embodies a two-stage approach: the initial phase centers on discerning and segregating the watermark component, while the subsequent phase focuses on background content restoration.
To achieve meticulous background restoration, our proposed model employs a dual-path network capable of fully exploring the intrinsic background information beneath semi-transparent watermarks.
arXiv Detail & Related papers (2023-12-22T02:19:23Z) - Robust Identity Perceptual Watermark Against Deepfake Face Swapping [8.276177968730549]
Deepfake face swapping has caused critical privacy issues with the rapid development of deep generative models.
We propose the first robust identity perceptual watermarking framework that concurrently performs detection and source tracing against Deepfake face swapping.
arXiv Detail & Related papers (2023-11-02T16:04:32Z) - Robustness of AI-Image Detectors: Fundamental Limits and Practical
Attacks [47.04650443491879]
We analyze the robustness of various AI-image detectors including watermarking and deepfake detectors.
We show that watermarking methods are vulnerable to spoofing attacks where the attacker aims to have real images identified as watermarked ones.
arXiv Detail & Related papers (2023-09-29T18:30:29Z) - T2IW: Joint Text to Image & Watermark Generation [74.20148555503127]
We introduce a novel task for the joint generation of text to image and watermark (T2IW)
This T2IW scheme ensures minimal damage to image quality when generating a compound image by forcing the semantic feature and the watermark signal to be compatible in pixels.
We demonstrate remarkable achievements in image quality, watermark invisibility, and watermark robustness, supported by our proposed set of evaluation metrics.
arXiv Detail & Related papers (2023-09-07T16:12:06Z) - Safe and Robust Watermark Injection with a Single OoD Image [90.71804273115585]
Training a high-performance deep neural network requires large amounts of data and computational resources.
We propose a safe and robust backdoor-based watermark injection technique.
We induce random perturbation of model parameters during watermark injection to defend against common watermark removal attacks.
arXiv Detail & Related papers (2023-09-04T19:58:35Z) - Robust Face-Swap Detection Based on 3D Facial Shape Information [59.32489266682952]
Face-swap images and videos have attracted more and more malicious attackers to discredit some key figures.
Previous pixel-level artifacts based detection techniques always focus on some unclear patterns but ignore some available semantic clues.
We propose a biometric information based method to fully exploit the appearance and shape feature for face-swap detection of key figures.
arXiv Detail & Related papers (2021-04-28T09:35:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.