Domain Transfer in Latent Space (DTLS) Wins on Image Super-Resolution --
a Non-Denoising Model
- URL: http://arxiv.org/abs/2311.02358v4
- Date: Thu, 21 Dec 2023 06:01:32 GMT
- Title: Domain Transfer in Latent Space (DTLS) Wins on Image Super-Resolution --
a Non-Denoising Model
- Authors: Chun-Chuen Hui, Wan-Chi Siu, Ngai-Fong Law
- Abstract summary: We propose a simple approach which gets away from using Gaussian noise but adopts some basic structures of diffusion models for efficient image super-resolution.
Experimental results show that our method outperforms not only state-of-the-art large scale super resolution models, but also the current diffusion models for image super-resolution.
- Score: 13.326634982790528
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Large scale image super-resolution is a challenging computer vision task,
since vast information is missing in a highly degraded image, say for example
forscale x16 super-resolution. Diffusion models are used successfully in recent
years in extreme super-resolution applications, in which Gaussian noise is used
as a means to form a latent photo-realistic space, and acts as a link between
the space of latent vectors and the latent photo-realistic space. There are
quite a few sophisticated mathematical derivations on mapping the statistics of
Gaussian noises making Diffusion Models successful. In this paper we propose a
simple approach which gets away from using Gaussian noise but adopts some basic
structures of diffusion models for efficient image super-resolution.
Essentially, we propose a DNN to perform domain transfer between neighbor
domains, which can learn the differences in statistical properties to
facilitate gradual interpolation with results of reasonable quality. Further
quality improvement is achieved by conditioning the domain transfer with
reference to the input LR image. Experimental results show that our method
outperforms not only state-of-the-art large scale super resolution models, but
also the current diffusion models for image super-resolution. The approach can
readily be extended to other image-to-image tasks, such as image enlightening,
inpainting, denoising, etc.
Related papers
- Image Neural Field Diffusion Models [46.781775067944395]
We propose to learn the distribution of continuous images by training diffusion models on image neural fields.
We show that image neural field diffusion models can be trained using mixed-resolution image datasets, outperform fixed-resolution diffusion models, and can solve inverse problems with conditions applied at different scales efficiently.
arXiv Detail & Related papers (2024-06-11T17:24:02Z) - Arbitrary-Scale Image Generation and Upsampling using Latent Diffusion Model and Implicit Neural Decoder [29.924160271522354]
Super-resolution (SR) and image generation are important tasks in computer vision and are widely adopted in real-world applications.
Most existing methods, however, generate images only at fixed-scale magnification and suffer from over-smoothing and artifacts.
Most relevant work applied Implicit Neural Representation (INR) to the denoising diffusion model to obtain continuous-resolution yet diverse and high-quality SR results.
We propose a novel pipeline that can super-resolve an input image or generate from a random noise a novel image at arbitrary scales.
arXiv Detail & Related papers (2024-03-15T12:45:40Z) - ACDMSR: Accelerated Conditional Diffusion Models for Single Image
Super-Resolution [84.73658185158222]
We propose a diffusion model-based super-resolution method called ACDMSR.
Our method adapts the standard diffusion model to perform super-resolution through a deterministic iterative denoising process.
Our approach generates more visually realistic counterparts for low-resolution images, emphasizing its effectiveness in practical scenarios.
arXiv Detail & Related papers (2023-07-03T06:49:04Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
Diffusion models (DMs) have been introduced in image deblurring and exhibited promising performance.
We propose the Hierarchical Integration Diffusion Model (HI-Diff), for realistic image deblurring.
Experiments on synthetic and real-world blur datasets demonstrate that our HI-Diff outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-05-22T12:18:20Z) - SDM: Spatial Diffusion Model for Large Hole Image Inpainting [106.90795513361498]
We present a novel spatial diffusion model (SDM) that uses a few iterations to gradually deliver informative pixels to the entire image.
Also, thanks to the proposed decoupled probabilistic modeling and spatial diffusion scheme, our method achieves high-quality large-hole completion.
arXiv Detail & Related papers (2022-12-06T13:30:18Z) - Unsupervised Single Image Super-resolution Under Complex Noise [60.566471567837574]
This paper proposes a model-based unsupervised SISR method to deal with the general SISR task with unknown degradations.
The proposed method can evidently surpass the current state of the art (SotA) method (about 1dB PSNR) not only with a slighter model (0.34M vs. 2.40M) but also faster speed.
arXiv Detail & Related papers (2021-07-02T11:55:40Z) - Designing a Practical Degradation Model for Deep Blind Image
Super-Resolution [134.9023380383406]
Single image super-resolution (SISR) methods would not perform well if the assumed degradation model deviates from those in real images.
This paper proposes to design a more complex but practical degradation model that consists of randomly shuffled blur, downsampling and noise degradations.
arXiv Detail & Related papers (2021-03-25T17:40:53Z) - PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of
Generative Models [77.32079593577821]
PULSE (Photo Upsampling via Latent Space Exploration) generates high-resolution, realistic images at resolutions previously unseen in the literature.
Our method outperforms state-of-the-art methods in perceptual quality at higher resolutions and scale factors than previously possible.
arXiv Detail & Related papers (2020-03-08T16:44:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.