DeltaDiff: Reality-Driven Diffusion with AnchorResiduals for Faithful SR
- URL: http://arxiv.org/abs/2502.12567v2
- Date: Wed, 16 Jul 2025 08:33:10 GMT
- Title: DeltaDiff: Reality-Driven Diffusion with AnchorResiduals for Faithful SR
- Authors: Chao Yang, Yong Fan, Qichao Zhang, Cheng Lu, Zhijing Yang,
- Abstract summary: We propose DeltaDiff, a novel frame.work that constrains the difusion process.<n>Our method surpasses state-of-the-art models and generates re-sults with better fidelity.<n>This work establishes a new low-rank constrained par-adigm for applying diffusion models to image reconstruction tasks.
- Score: 10.790771977682763
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, the transfer application of diffusion models in super-resolu-tion tasks has faced the problem ofdecreased fidelity. Due to the inherent randomsampling characteristics ofdiffusion models, direct application in super-resolu-tion tasks can result in generated details deviating from the true distribution ofhigh-resolution images. To address this, we propose DeltaDiff, a novel frame.work that constrains the difusion process, its essence is to establish a determin-istic mapping path between HR and LR, rather than the random noise disturbanceprocess oftraditional difusion models. Theoretical analysis demonstrates a 25%reduction in diffusion entropy in the residual space compared to pixel-space diffiusion, effectively suppressing irrelevant noise interference. The experimentalresults show that our method surpasses state-of-the-art models and generates re-sults with better fidelity. This work establishes a new low-rank constrained par-adigm for applying diffusion models to image reconstruction tasks, balancingstochastic generation with structural fidelity. Our code and model are publiclyavailable at https://github.com/continueyang/DeltaDiff .
Related papers
- Reconciling Stochastic and Deterministic Strategies for Zero-shot Image Restoration using Diffusion Model in Dual [47.141811103506036]
We propose a novel zero-shot image restoration scheme dubbed Reconciling Model in Dual (RDMD)<n>RDMD uses only a bftextsingle pre-trained diffusion model to construct texttwo regularizers.<n>Our proposed method could achieve superior results compared to existing approaches on both the FFHQ and ImageNet datasets.
arXiv Detail & Related papers (2025-03-03T08:25:22Z) - One Diffusion Step to Real-World Super-Resolution via Flow Trajectory Distillation [60.54811860967658]
FluxSR is a novel one-step diffusion Real-ISR based on flow matching models.<n>First, we introduce Flow Trajectory Distillation (FTD) to distill a multi-step flow matching model into a one-step Real-ISR.<n>Second, to improve image realism and address high-frequency artifact issues in generated images, we propose TV-LPIPS as a perceptual loss.
arXiv Detail & Related papers (2025-02-04T04:11:29Z) - Non-Normal Diffusion Models [3.5534933448684134]
Diffusion models generate samples by incrementally reversing a process that turns data into noise.<n>We show that when the step size goes to zero, the reversed process is invariant to the distribution of these increments.<n>We demonstrate the effectiveness of these models on density estimation and generative modeling tasks on standard image datasets.
arXiv Detail & Related papers (2024-12-10T21:31:12Z) - Distilling Diffusion Models into Conditional GANs [90.76040478677609]
We distill a complex multistep diffusion model into a single-step conditional GAN student model.
For efficient regression loss, we propose E-LatentLPIPS, a perceptual loss operating directly in diffusion model's latent space.
We demonstrate that our one-step generator outperforms cutting-edge one-step diffusion distillation models.
arXiv Detail & Related papers (2024-05-09T17:59:40Z) - Guided Diffusion from Self-Supervised Diffusion Features [49.78673164423208]
Guidance serves as a key concept in diffusion models, yet its effectiveness is often limited by the need for extra data annotation or pretraining.
We propose a framework to extract guidance from, and specifically for, diffusion models.
arXiv Detail & Related papers (2023-12-14T11:19:11Z) - The Emergence of Reproducibility and Generalizability in Diffusion Models [10.188731323681575]
Given the same starting noise input and a deterministic sampler, different diffusion models often yield remarkably similar outputs.
We show that diffusion models are learning distinct distributions affected by the training data size.
This valuable property generalizes to many variants of diffusion models, including those for conditional use, solving inverse problems, and model fine-tuning.
arXiv Detail & Related papers (2023-10-08T19:02:46Z) - Steerable Conditional Diffusion for Out-of-Distribution Adaptation in Medical Image Reconstruction [75.91471250967703]
We introduce a novel sampling framework called Steerable Conditional Diffusion.<n>This framework adapts the diffusion model, concurrently with image reconstruction, based solely on the information provided by the available measurement.<n>We achieve substantial enhancements in out-of-distribution performance across diverse imaging modalities.
arXiv Detail & Related papers (2023-08-28T08:47:06Z) - Exploring the Optimal Choice for Generative Processes in Diffusion
Models: Ordinary vs Stochastic Differential Equations [6.2284442126065525]
We study the problem mathematically for two limiting scenarios: the zero diffusion (ODE) case and the large diffusion case.
Our findings indicate that when the perturbation occurs at the end of the generative process, the ODE model outperforms the SDE model with a large diffusion coefficient.
arXiv Detail & Related papers (2023-06-03T09:27:15Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
Diffusion models have achieved promising results in image restoration tasks, yet suffer from time-consuming, excessive computational resource consumption, and unstable restoration.
We propose a robust and efficient Diffusion-based Low-Light image enhancement approach, dubbed DiffLL.
arXiv Detail & Related papers (2023-06-01T03:08:28Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
Diffusion models (DMs) have been introduced in image deblurring and exhibited promising performance.
We propose the Hierarchical Integration Diffusion Model (HI-Diff), for realistic image deblurring.
Experiments on synthetic and real-world blur datasets demonstrate that our HI-Diff outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-05-22T12:18:20Z) - A Variational Perspective on Solving Inverse Problems with Diffusion
Models [101.831766524264]
Inverse tasks can be formulated as inferring a posterior distribution over data.
This is however challenging in diffusion models since the nonlinear and iterative nature of the diffusion process renders the posterior intractable.
We propose a variational approach that by design seeks to approximate the true posterior distribution.
arXiv Detail & Related papers (2023-05-07T23:00:47Z) - DDRF: Denoising Diffusion Model for Remote Sensing Image Fusion [7.06521373423708]
Denosing diffusion model, as a generative model, has received a lot of attention in the field of image generation.
We introduce diffusion model to the image fusion field, treating the image fusion task as image-to-image translation.
Our method can inspire other works and gain insight into this field to better apply the diffusion model to image fusion tasks.
arXiv Detail & Related papers (2023-04-10T12:28:27Z) - SinDiffusion: Learning a Diffusion Model from a Single Natural Image [159.4285444680301]
We present SinDiffusion, leveraging denoising diffusion models to capture internal distribution of patches from a single natural image.
It is based on two core designs. First, SinDiffusion is trained with a single model at a single scale instead of multiple models with progressive growing of scales.
Second, we identify that a patch-level receptive field of the diffusion network is crucial and effective for capturing the image's patch statistics.
arXiv Detail & Related papers (2022-11-22T18:00:03Z) - Unifying Diffusion Models' Latent Space, with Applications to
CycleDiffusion and Guidance [95.12230117950232]
We show that a common latent space emerges from two diffusion models trained independently on related domains.
Applying CycleDiffusion to text-to-image diffusion models, we show that large-scale text-to-image diffusion models can be used as zero-shot image-to-image editors.
arXiv Detail & Related papers (2022-10-11T15:53:52Z) - On Distillation of Guided Diffusion Models [94.95228078141626]
We propose an approach to distilling classifier-free guided diffusion models into models that are fast to sample from.
For standard diffusion models trained on the pixelspace, our approach is able to generate images visually comparable to that of the original model.
For diffusion models trained on the latent-space (e.g., Stable Diffusion), our approach is able to generate high-fidelity images using as few as 1 to 4 denoising steps.
arXiv Detail & Related papers (2022-10-06T18:03:56Z) - Cold Diffusion: Inverting Arbitrary Image Transforms Without Noise [52.59444045853966]
We show that an entire family of generative models can be constructed by varying the choice of image degradation.
The success of fully deterministic models calls into question the community's understanding of diffusion models.
arXiv Detail & Related papers (2022-08-19T15:18:39Z) - Non-Uniform Diffusion Models [0.8602553195689513]
We show that non-uniform diffusion leads to multi-scale diffusion models which have similar structure to this of multi-scale normalizing flows.
We experimentally find that in the same or less training time, the multi-scale diffusion model achieves better FID score than the standard uniform diffusion model.
We also show that non-uniform diffusion leads to a novel estimator for the conditional score function which achieves on par performance with the state-of-the-art conditional denoising estimator.
arXiv Detail & Related papers (2022-07-20T09:59:28Z) - Come-Closer-Diffuse-Faster: Accelerating Conditional Diffusion Models
for Inverse Problems through Stochastic Contraction [31.61199061999173]
Diffusion models have a critical downside - they are inherently slow to sample from, needing few thousand steps of iteration to generate images from pure Gaussian noise.
We show that starting from Gaussian noise is unnecessary. Instead, starting from a single forward diffusion with better initialization significantly reduces the number of sampling steps in the reverse conditional diffusion.
New sampling strategy, dubbed ComeCloser-DiffuseFaster (CCDF), also reveals a new insight on how the existing feedforward neural network approaches for inverse problems can be synergistically combined with the diffusion models.
arXiv Detail & Related papers (2021-12-09T04:28:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.