LocoMuJoCo: A Comprehensive Imitation Learning Benchmark for Locomotion
- URL: http://arxiv.org/abs/2311.02496v2
- Date: Thu, 30 Nov 2023 17:47:04 GMT
- Title: LocoMuJoCo: A Comprehensive Imitation Learning Benchmark for Locomotion
- Authors: Firas Al-Hafez and Guoping Zhao and Jan Peters and Davide Tateo
- Abstract summary: Imitation Learning holds great promise for enabling agile locomotion in embodied agents.
We present a novel benchmark designed to facilitate rigorous evaluation and comparison of IL algorithms.
This benchmark encompasses a diverse set of environments, including quadrupeds, bipeds, and musculoskeletal human models.
- Score: 20.545058017790428
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Imitation Learning (IL) holds great promise for enabling agile locomotion in
embodied agents. However, many existing locomotion benchmarks primarily focus
on simplified toy tasks, often failing to capture the complexity of real-world
scenarios and steering research toward unrealistic domains. To advance research
in IL for locomotion, we present a novel benchmark designed to facilitate
rigorous evaluation and comparison of IL algorithms. This benchmark encompasses
a diverse set of environments, including quadrupeds, bipeds, and
musculoskeletal human models, each accompanied by comprehensive datasets, such
as real noisy motion capture data, ground truth expert data, and ground truth
sub-optimal data, enabling evaluation across a spectrum of difficulty levels.
To increase the robustness of learned agents, we provide an easy interface for
dynamics randomization and offer a wide range of partially observable tasks to
train agents across different embodiments. Finally, we provide handcrafted
metrics for each task and ship our benchmark with state-of-the-art baseline
algorithms to ease evaluation and enable fast benchmarking.
Related papers
- NUMOSIM: A Synthetic Mobility Dataset with Anomaly Detection Benchmarks [5.852777557137612]
We introduce a synthetic mobility dataset, NUMOSIM, that provides a controlled, ethical, and diverse environment for anomaly benchmarking techniques.
NUMOSIM simulates a wide array of realistic mobility scenarios, encompassing both typical and anomalous behaviours.
We provide open access to the NUMOSIM dataset, along with comprehensive documentation, evaluation metrics, and benchmark results.
arXiv Detail & Related papers (2024-09-04T18:31:24Z) - A Practitioner's Guide to Continual Multimodal Pretraining [83.63894495064855]
Multimodal foundation models serve numerous applications at the intersection of vision and language.
To keep models updated, research into continual pretraining mainly explores scenarios with either infrequent, indiscriminate updates on large-scale new data, or frequent, sample-level updates.
We introduce FoMo-in-Flux, a continual multimodal pretraining benchmark with realistic compute constraints and practical deployment requirements.
arXiv Detail & Related papers (2024-08-26T17:59:01Z) - Learning Generalizable Human Motion Generator with Reinforcement Learning [95.62084727984808]
Text-driven human motion generation is one of the vital tasks in computer-aided content creation.
Existing methods often overfit specific motion expressions in the training data, hindering their ability to generalize.
We present textbfInstructMotion, which incorporate the trail and error paradigm in reinforcement learning for generalizable human motion generation.
arXiv Detail & Related papers (2024-05-24T13:29:12Z) - Are You Being Tracked? Discover the Power of Zero-Shot Trajectory
Tracing with LLMs! [3.844253028598048]
This study introduces LLMTrack, a model that illustrates how LLMs can be leveraged for Zero-Shot Trajectory Recognition.
We evaluate the model using real-world datasets designed to challenge it with distinct trajectories characterized by indoor and outdoor scenarios.
arXiv Detail & Related papers (2024-03-10T12:50:35Z) - Waymax: An Accelerated, Data-Driven Simulator for Large-Scale Autonomous
Driving Research [76.93956925360638]
Waymax is a new data-driven simulator for autonomous driving in multi-agent scenes.
It runs entirely on hardware accelerators such as TPUs/GPUs and supports in-graph simulation for training.
We benchmark a suite of popular imitation and reinforcement learning algorithms with ablation studies on different design decisions.
arXiv Detail & Related papers (2023-10-12T20:49:15Z) - DTC: Deep Tracking Control [16.2850135844455]
We propose a hybrid control architecture that combines the advantages of both worlds to achieve greater robustness, foot-placement accuracy, and terrain generalization.
A deep neural network policy is trained in simulation, aiming to track the optimized footholds.
We demonstrate superior robustness in the presence of slippery or deformable ground when compared to model-based counterparts.
arXiv Detail & Related papers (2023-09-27T07:57:37Z) - Learning from Temporal Spatial Cubism for Cross-Dataset Skeleton-based
Action Recognition [88.34182299496074]
Action labels are only available on a source dataset, but unavailable on a target dataset in the training stage.
We utilize a self-supervision scheme to reduce the domain shift between two skeleton-based action datasets.
By segmenting and permuting temporal segments or human body parts, we design two self-supervised learning classification tasks.
arXiv Detail & Related papers (2022-07-17T07:05:39Z) - Basket-based Softmax [12.744577044692276]
We propose a novel mining-during-training strategy called Basket-based Softmax (BBS)
For each training sample, we simultaneously adopt similarity scores as the clue to mining negative classes from other datasets.
We demonstrate the efficiency and superiority of the BBS on the tasks of face recognition and re-identification, with both simulated and real-world datasets.
arXiv Detail & Related papers (2022-01-23T16:43:29Z) - Towards Optimal Strategies for Training Self-Driving Perception Models
in Simulation [98.51313127382937]
We focus on the use of labels in the synthetic domain alone.
Our approach introduces both a way to learn neural-invariant representations and a theoretically inspired view on how to sample the data from the simulator.
We showcase our approach on the bird's-eye-view vehicle segmentation task with multi-sensor data.
arXiv Detail & Related papers (2021-11-15T18:37:43Z) - Multitask Adaptation by Retrospective Exploration with Learned World
Models [77.34726150561087]
We propose a meta-learned addressing model called RAMa that provides training samples for the MBRL agent taken from task-agnostic storage.
The model is trained to maximize the expected agent's performance by selecting promising trajectories solving prior tasks from the storage.
arXiv Detail & Related papers (2021-10-25T20:02:57Z) - SVIRO: Synthetic Vehicle Interior Rear Seat Occupancy Dataset and
Benchmark [11.101588888002045]
We release SVIRO, a synthetic dataset for sceneries in the passenger compartment of ten different vehicles.
We analyze machine learning-based approaches for their generalization capacities and reliability when trained on a limited number of variations.
arXiv Detail & Related papers (2020-01-10T14:44:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.