Data Quality Aware Approaches for Addressing Model Drift of Semantic
Segmentation Models
- URL: http://arxiv.org/abs/2402.07258v1
- Date: Sun, 11 Feb 2024 18:01:52 GMT
- Title: Data Quality Aware Approaches for Addressing Model Drift of Semantic
Segmentation Models
- Authors: Samiha Mirza, Vuong D. Nguyen, Pranav Mantini, Shishir K. Shah
- Abstract summary: This study investigates two prominent quality aware strategies to combat model drift.
The former leverages image quality assessment metrics to meticulously select high-quality training data, improving the model robustness.
The latter makes use of learned vectors feature from existing models to guide the selection of future data, aligning it with the model's prior knowledge.
- Score: 1.6385815610837167
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the midst of the rapid integration of artificial intelligence (AI) into
real world applications, one pressing challenge we confront is the phenomenon
of model drift, wherein the performance of AI models gradually degrades over
time, compromising their effectiveness in real-world, dynamic environments.
Once identified, we need techniques for handling this drift to preserve the
model performance and prevent further degradation. This study investigates two
prominent quality aware strategies to combat model drift: data quality
assessment and data conditioning based on prior model knowledge. The former
leverages image quality assessment metrics to meticulously select high-quality
training data, improving the model robustness, while the latter makes use of
learned feature vectors from existing models to guide the selection of future
data, aligning it with the model's prior knowledge. Through comprehensive
experimentation, this research aims to shed light on the efficacy of these
approaches in enhancing the performance and reliability of semantic
segmentation models, thereby contributing to the advancement of computer vision
capabilities in real-world scenarios.
Related papers
- AIDE: An Automatic Data Engine for Object Detection in Autonomous Driving [68.73885845181242]
We propose an Automatic Data Engine (AIDE) that automatically identifies issues, efficiently curates data, improves the model through auto-labeling, and verifies the model through generation of diverse scenarios.
We further establish a benchmark for open-world detection on AV datasets to comprehensively evaluate various learning paradigms, demonstrating our method's superior performance at a reduced cost.
arXiv Detail & Related papers (2024-03-26T04:27:56Z) - DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
Current perceptive models heavily depend on resource-intensive datasets.
We introduce perception-aware loss (P.A. loss) through segmentation, improving both quality and controllability.
Our method customizes data augmentation by extracting and utilizing perception-aware attribute (P.A. Attr) during generation.
arXiv Detail & Related papers (2024-03-20T04:58:03Z) - GISTEmbed: Guided In-sample Selection of Training Negatives for Text
Embedding Fine-tuning [0.0]
GISTEmbed is a novel strategy that enhances in-batch negative selection during contrastive training through a guide model.
Benchmarked against the Massive Text Embedding Benchmark (MTEB), GISTEmbed showcases consistent performance improvements across various model sizes.
arXiv Detail & Related papers (2024-02-26T18:55:15Z) - Deep autoregressive density nets vs neural ensembles for model-based
offline reinforcement learning [2.9158689853305693]
We consider a model-based reinforcement learning algorithm that infers the system dynamics from the available data and performs policy optimization on imaginary model rollouts.
This approach is vulnerable to exploiting model errors which can lead to catastrophic failures on the real system.
We show that better performance can be obtained with a single well-calibrated autoregressive model on the D4RL benchmark.
arXiv Detail & Related papers (2024-02-05T10:18:15Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
We propose QualEval, which augments quantitative scalar metrics with automated qualitative evaluation as a vehicle for model improvement.
QualEval uses a powerful LLM reasoner and our novel flexible linear programming solver to generate human-readable insights.
We demonstrate that leveraging its insights, for example, improves the absolute performance of the Llama 2 model by up to 15% points relative.
arXiv Detail & Related papers (2023-11-06T00:21:44Z) - Progressive reduced order modeling: empowering data-driven modeling with
selective knowledge transfer [0.0]
We propose a progressive reduced order modeling framework that minimizes data cravings and enhances data-driven modeling's practicality.
Our approach selectively transfers knowledge from previously trained models through gates, similar to how humans selectively use valuable knowledge while ignoring unuseful information.
We have tested our framework in several cases, including transport in porous media, gravity-driven flow, and finite deformation in hyperelastic materials.
arXiv Detail & Related papers (2023-10-04T23:50:14Z) - Exploring Model Transferability through the Lens of Potential Energy [78.60851825944212]
Transfer learning has become crucial in computer vision tasks due to the vast availability of pre-trained deep learning models.
Existing methods for measuring the transferability of pre-trained models rely on statistical correlations between encoded static features and task labels.
We present an insightful physics-inspired approach named PED to address these challenges.
arXiv Detail & Related papers (2023-08-29T07:15:57Z) - Robustness and Generalization Performance of Deep Learning Models on
Cyber-Physical Systems: A Comparative Study [71.84852429039881]
Investigation focuses on the models' ability to handle a range of perturbations, such as sensor faults and noise.
We test the generalization and transfer learning capabilities of these models by exposing them to out-of-distribution (OOD) samples.
arXiv Detail & Related papers (2023-06-13T12:43:59Z) - Knowledge-Guided Dynamic Systems Modeling: A Case Study on Modeling
River Water Quality [8.110949636804774]
Modeling real-world phenomena is a focus of many science and engineering efforts, such as ecological modeling and financial forecasting.
Building an accurate model for complex and dynamic systems improves understanding of underlying processes and leads to resource efficiency.
At the opposite extreme, data-driven modeling learns a model directly from data, requiring extensive data and potentially generating overfitting.
We focus on an intermediate approach, model revision, in which prior knowledge and data are combined to achieve the best of both worlds.
arXiv Detail & Related papers (2021-03-01T06:31:38Z) - Goal-Aware Prediction: Learning to Model What Matters [105.43098326577434]
One of the fundamental challenges in using a learned forward dynamics model is the mismatch between the objective of the learned model and that of the downstream planner or policy.
We propose to direct prediction towards task relevant information, enabling the model to be aware of the current task and encouraging it to only model relevant quantities of the state space.
We find that our method more effectively models the relevant parts of the scene conditioned on the goal, and as a result outperforms standard task-agnostic dynamics models and model-free reinforcement learning.
arXiv Detail & Related papers (2020-07-14T16:42:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.