TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications
- URL: http://arxiv.org/abs/2311.02971v3
- Date: Mon, 26 Aug 2024 07:46:53 GMT
- Title: TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications
- Authors: David Salinas, Nick Erickson,
- Abstract summary: TabRepo is a new dataset of model evaluations and predictions.
It contains the predictions and metrics of 1310 models evaluated on 200 datasets.
- Score: 9.457938949410583
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce TabRepo, a new dataset of tabular model evaluations and predictions. TabRepo contains the predictions and metrics of 1310 models evaluated on 200 classification and regression datasets. We illustrate the benefit of our dataset in multiple ways. First, we show that it allows to perform analysis such as comparing Hyperparameter Optimization against current AutoML systems while also considering ensembling at marginal cost by using precomputed model predictions. Second, we show that our dataset can be readily leveraged to perform transfer-learning. In particular, we show that applying standard transfer-learning techniques allows to outperform current state-of-the-art tabular systems in accuracy, runtime and latency.
Related papers
- Training-Free Generalization on Heterogeneous Tabular Data via
Meta-Representation [67.30538142519067]
We propose Tabular data Pre-Training via Meta-representation (TabPTM)
A deep neural network is then trained to associate these meta-representations with dataset-specific classification confidences.
Experiments validate that TabPTM achieves promising performance in new datasets, even under few-shot scenarios.
arXiv Detail & Related papers (2023-10-31T18:03:54Z) - Scaling Experiments in Self-Supervised Cross-Table Representation
Learning [0.0]
We introduce a novel Transformer-based architecture specifically tailored to tabular data and cross-table representation learning.
Our training approach encompasses both single-table and cross-table models, trained via missing value imputation.
To understand the scaling behavior of our method, we train models of varying sizes, ranging from approximately $104$ to $107$ parameters.
arXiv Detail & Related papers (2023-09-29T15:48:38Z) - Retrieval-Based Transformer for Table Augmentation [14.460363647772745]
We introduce a novel approach toward automatic data wrangling.
We aim to address table augmentation tasks, including row/column population and data imputation.
Our model consistently and substantially outperforms both supervised statistical methods and the current state-of-the-art transformer-based models.
arXiv Detail & Related papers (2023-06-20T18:51:21Z) - Quick-Tune: Quickly Learning Which Pretrained Model to Finetune and How [62.467716468917224]
We propose a methodology that jointly searches for the optimal pretrained model and the hyperparameters for finetuning it.
Our method transfers knowledge about the performance of many pretrained models on a series of datasets.
We empirically demonstrate that our resulting approach can quickly select an accurate pretrained model for a new dataset.
arXiv Detail & Related papers (2023-06-06T16:15:26Z) - Variational Factorization Machines for Preference Elicitation in
Large-Scale Recommender Systems [17.050774091903552]
We propose a variational formulation of factorization machines (FMs) that can be easily optimized using standard mini-batch descent gradient.
Our algorithm learns an approximate posterior distribution over the user and item parameters, which leads to confidence intervals over the predictions.
We show, using several datasets, that it has comparable or better performance than existing methods in terms of prediction accuracy.
arXiv Detail & Related papers (2022-12-20T00:06:28Z) - A Memory Transformer Network for Incremental Learning [64.0410375349852]
We study class-incremental learning, a training setup in which new classes of data are observed over time for the model to learn from.
Despite the straightforward problem formulation, the naive application of classification models to class-incremental learning results in the "catastrophic forgetting" of previously seen classes.
One of the most successful existing methods has been the use of a memory of exemplars, which overcomes the issue of catastrophic forgetting by saving a subset of past data into a memory bank and utilizing it to prevent forgetting when training future tasks.
arXiv Detail & Related papers (2022-10-10T08:27:28Z) - fETSmcs: Feature-based ETS model component selection [8.99236558175168]
We propose an efficient approach for ETS model selection by training classifiers on simulated data to predict appropriate model component forms for a given time series.
We evaluate our approach on the widely used forecasting competition data set M4 in terms of both point forecasts and prediction intervals.
arXiv Detail & Related papers (2022-06-26T13:52:43Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - Automatic Pharma News Categorization [0.0]
We use a text dataset consisting of 23 news categories relevant to pharma information science.
We compare the fine-tuning performance of multiple transformer models in a classification task.
We propose an ensemble model consisting of the top performing individual predictors.
arXiv Detail & Related papers (2021-12-28T08:42:16Z) - Comparing Test Sets with Item Response Theory [53.755064720563]
We evaluate 29 datasets using predictions from 18 pretrained Transformer models on individual test examples.
We find that Quoref, HellaSwag, and MC-TACO are best suited for distinguishing among state-of-the-art models.
We also observe span selection task format, which is used for QA datasets like QAMR or SQuAD2.0, is effective in differentiating between strong and weak models.
arXiv Detail & Related papers (2021-06-01T22:33:53Z) - Meta-learning framework with applications to zero-shot time-series
forecasting [82.61728230984099]
This work provides positive evidence using a broad meta-learning framework.
residual connections act as a meta-learning adaptation mechanism.
We show that it is viable to train a neural network on a source TS dataset and deploy it on a different target TS dataset without retraining.
arXiv Detail & Related papers (2020-02-07T16:39:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.