論文の概要: SugarViT -- Multi-objective Regression of UAV Images with Vision
Transformers and Deep Label Distribution Learning Demonstrated on Disease
Severity Prediction in Sugar Beet
- arxiv url: http://arxiv.org/abs/2311.03076v3
- Date: Thu, 1 Feb 2024 18:47:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-02 18:47:54.390109
- Title: SugarViT -- Multi-objective Regression of UAV Images with Vision
Transformers and Deep Label Distribution Learning Demonstrated on Disease
Severity Prediction in Sugar Beet
- Title(参考訳): SugarViT -- 糖蜜の重症度予測に基づく視覚変換器とディープラベル分布学習によるUAV画像の多目的回帰
- Authors: Maurice G\"under, Facundo Ram\'on Ispizua Yamati, Abel Andree Barreto
Alc\'antara, Anne-Katrin Mahlein, Rafet Sifa, Christian Bauckhage
- Abstract要約: この研究は、大規模植物固有の特徴アノテーションを自動化するための機械学習フレームワークを導入する。
我々は、SugarViTと呼ばれる重症度評価のための効率的なビジョントランスフォーマーモデルを開発した。
この特殊なユースケースでモデルは評価されるが、様々な画像に基づく分類や回帰タスクにも可能な限り汎用的に適用可能である。
- 参考スコア(独自算出の注目度): 3.2925222641796554
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Remote sensing and artificial intelligence are pivotal technologies of
precision agriculture nowadays. The efficient retrieval of large-scale field
imagery combined with machine learning techniques shows success in various
tasks like phenotyping, weeding, cropping, and disease control. This work will
introduce a machine learning framework for automatized large-scale
plant-specific trait annotation for the use case disease severity scoring for
Cercospora Leaf Spot (CLS) in sugar beet. With concepts of Deep Label
Distribution Learning (DLDL), special loss functions, and a tailored model
architecture, we develop an efficient Vision Transformer based model for
disease severity scoring called SugarViT. One novelty in this work is the
combination of remote sensing data with environmental parameters of the
experimental sites for disease severity prediction. Although the model is
evaluated on this special use case, it is held as generic as possible to also
be applicable to various image-based classification and regression tasks. With
our framework, it is even possible to learn models on multi-objective problems
as we show by a pretraining on environmental metadata.
- Abstract(参考訳): リモートセンシングと人工知能は、現代の精密農業の重要な技術である。
機械学習技術と組み合わせた大規模フィールド画像の効率的な検索は、表現型、雑草、収穫、疾病管理といった様々なタスクで成功している。
本研究は,サトウキビにおけるCercospora Leaf Spot (CLS)の症例重症度評価のための,大規模植物特異的形質アノテーションの自動化のための機械学習フレームワークを導入する。
深層ラベル分布学習 (dldl) の概念, 特殊損失関数, 適応型モデルアーキテクチャを用いて,sugarvitと呼ばれる病害度スコアリングのための効率的な視覚トランスフォーマモデルを開発した。
この研究の新たな点は、リモートセンシングデータと、病気の重症度予測のための実験場の環境パラメータを組み合わせることである。
この特殊なユースケースでモデルは評価されるが、様々な画像に基づく分類や回帰タスクにも可能な限り汎用的に適用可能である。
本フレームワークでは,環境メタデータの事前学習により,多目的問題に関するモデルを学習することも可能である。
関連論文リスト
- Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
本稿では,CLIPモデルを用いた医用異常検出のための軽量な多レベル適応と比較フレームワークを提案する。
提案手法では,複数の残像アダプタを事前学習した視覚エンコーダに統合し,視覚的特徴の段階的向上を実現する。
医学的異常検出ベンチマーク実験により,本手法が現在の最先端モデルを大幅に上回っていることが示された。
論文 参考訳(メタデータ) (2024-03-19T09:28:19Z) - Machine Learning-Based Jamun Leaf Disease Detection: A Comprehensive
Review [0.0]
ジャムン葉病は農業の生産性に重大な脅威をもたらす。
機械学習の出現は、これらの病気に効果的に取り組むための新たな道を開いた。
画像処理技術を用いた類似の疾患検出のために,様々な自動化システムが実装されている。
論文 参考訳(メタデータ) (2023-11-27T11:46:30Z) - Machine Learning-Based Tea Leaf Disease Detection: A Comprehensive
Review [3.3916160303055563]
茶葉病は農業生産にとって大きな課題であり、茶産業の収量や品質に大きく影響している。
機械学習の台頭は、これらの病気に対処するための革新的なアプローチの開発を可能にした。
茶葉病の予測には,すでにさまざまな画像処理技術を用いていくつかの自動化システムが開発されている。
論文 参考訳(メタデータ) (2023-11-06T16:30:40Z) - Improving FHB Screening in Wheat Breeding Using an Efficient Transformer
Model [0.0]
フサリウム・ヘッド・ブライト(Fusarium head blight)は、小さな穀物に毎年重大な経済的損失をもたらす壊滅的な病気である。
FHBの早期検出のために,教師付き機械学習アルゴリズムを用いて画像処理技術を開発した。
変圧器モデルにU-Netネットワークの局所表現機能を統合するために,新しいContext Bridgeを提案する。
論文 参考訳(メタデータ) (2023-08-07T15:44:58Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
GradABM(GradABM)は、エージェントベースのモデリングのためのスケーラブルで微分可能な設計で、勾配に基づく学習と自動微分が可能である。
GradABMは、コモディティハードウェア上で数秒で数百万の人口をシミュレートし、ディープニューラルネットワークと統合し、異種データソースを取り込みます。
論文 参考訳(メタデータ) (2022-07-20T07:32:02Z) - Feature Representation Learning for Robust Retinal Disease Detection
from Optical Coherence Tomography Images [0.0]
眼科画像は、異なる網膜変性疾患を区別する自動化技術で失敗する、同一の外観の病理を含んでいる可能性がある。
本研究では,3つの学習ヘッドを持つ堅牢な疾患検出アーキテクチャを提案する。
2つのOCTデータセットによる実験結果から,提案モデルが既存の最先端モデルよりも精度,解釈可能性,堅牢性に優れ,網膜外網膜疾患の検出に有用であることが示唆された。
論文 参考訳(メタデータ) (2022-06-24T07:59:36Z) - Self-Supervised Vision Transformers Learn Visual Concepts in
Histopathology [5.164102666113966]
我々は、様々な弱い教師付きおよびパッチレベルのタスクに対する検証を行い、様々な自己教師付きモデルを訓練することにより、病理学における良い表現を探索する。
我々の重要な発見は、DINOベースの知識蒸留を用いたビジョントランスフォーマーが、組織像におけるデータ効率と解釈可能な特徴を学習できることを発見したことである。
論文 参考訳(メタデータ) (2022-03-01T16:14:41Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
我々は、人間の力で抽象化されたニューラルネットワークをデータレベルで注入できる新しい機械学習アーキテクチャを提案する。
具体的には、自然データと合成データに基づいて生成モデルを同時に訓練し、細胞数などの対象変数を確実に推定できる共有表現を学習する。
論文 参考訳(メタデータ) (2020-10-20T08:36:51Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
挑戦的なシナリオで堅牢なモデリングを可能にするディープラーニングフレームワークを提案する。
その結果,85%のラベル付きデータを用いて,大規模データ設定で学習した分類器の性能に適合する予測モデルを構築することができた。
論文 参考訳(メタデータ) (2020-05-03T02:36:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。