論文の概要: Small data deep learning methodology for in-field disease detection
- arxiv url: http://arxiv.org/abs/2409.17119v1
- Date: Wed, 25 Sep 2024 17:31:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-27 02:44:18.291988
- Title: Small data deep learning methodology for in-field disease detection
- Title(参考訳): フィールド内疾患検出のための微小データ深層学習手法
- Authors: David Herrera-Poyato, Jacinto Domínguez-Rull, Rosana Montes, Inés Hernánde, Ignacio Barrio, Carlos Poblete-Echeverria, Javier Tardaguila, Francisco Herrera, Andrés Herrera-Poyatos,
- Abstract要約: 本稿では,ポテト作物の遅発症状を軽度に検出できる最初の機械学習モデルを提案する。
提案手法は, 焦点損失関数を持つ深部畳み込みニューラルネットワークをベースとした, パッチ方式による高分解能画像の高精細化を実現する。
本モデルでは, 早期症状の同定に高い精度と有効性を示した。
- 参考スコア(独自算出の注目度): 6.2747249113031325
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Early detection of diseases in crops is essential to prevent harvest losses and improve the quality of the final product. In this context, the combination of machine learning and proximity sensors is emerging as a technique capable of achieving this detection efficiently and effectively. For example, this machine learning approach has been applied to potato crops -- to detect late blight (Phytophthora infestans) -- and grapevine crops -- to detect downy mildew. However, most of these AI models found in the specialised literature have been developed using leaf-by-leaf images taken in the lab, which does not represent field conditions and limits their applicability. In this study, we present the first machine learning model capable of detecting mild symptoms of late blight in potato crops through the analysis of high-resolution RGB images captured directly in the field, overcoming the limitations of other publications in the literature and presenting real-world applicability. Our proposal exploits the availability of high-resolution images via the concept of patching, and is based on deep convolutional neural networks with a focal loss function, which makes the model to focus on the complex patterns that arise in field conditions. Additionally, we present a data augmentation scheme that facilitates the training of these neural networks with few high-resolution images, which allows for development of models under the small data paradigm. Our model correctly detects all cases of late blight in the test dataset, demonstrating a high level of accuracy and effectiveness in identifying early symptoms. These promising results reinforce the potential use of machine learning for the early detection of diseases and pests in agriculture, enabling better treatment and reducing their impact on crops.
- Abstract(参考訳): 作物における病気の早期発見は、収穫の損失を防ぎ、最終製品の品質を向上させるために不可欠である。
この文脈では、機械学習と近接センサの組み合わせが、この検出を効率的に効果的に実現できる技術として登場しつつある。
例えば、この機械学習アプローチはジャガイモの収穫物(Phytophthora infestans)やブドウの収穫物(Phytophthora infestans)を検知し、腐ったミドウを検出するために応用されている。
しかし、これらのAIモデルのほとんどは、実験室で撮影されたリーフ・バイ・リーフ画像を用いて開発されており、フィールド条件を表現せず、適用性を制限している。
本研究では,ポテト作物の晩発病の軽度の症状を現場で直接撮影した高解像度RGB画像の解析によって検出し,文献における他の出版物の限界を克服し,現実の応用性を示す,最初の機械学習モデルを提案する。
提案手法は, 焦点損失関数を持つ深部畳み込みニューラルネットワークをベースとして, フィールド条件下で発生する複雑なパターンに着目した高分解能画像の高分解能化を実現する。
さらに,高解像度画像の少ないニューラルネットワークのトレーニングを容易にするデータ拡張方式を提案する。
本モデルでは, 早期症状の同定に高い精度と有効性を示した。
これらの有望な結果は、農業における病気や害虫の早期発見に機械学習が役立つ可能性を強化し、より良い治療と作物への影響を減らすことができる。
関連論文リスト
- SugarViT -- Multi-objective Regression of UAV Images with Vision
Transformers and Deep Label Distribution Learning Demonstrated on Disease
Severity Prediction in Sugar Beet [3.2925222641796554]
この研究は、大規模植物固有の特徴アノテーションを自動化するための機械学習フレームワークを導入する。
我々は、SugarViTと呼ばれる重症度評価のための効率的なビジョントランスフォーマーモデルを開発した。
この特殊なユースケースでモデルは評価されるが、様々な画像に基づく分類や回帰タスクにも可能な限り汎用的に適用可能である。
論文 参考訳(メタデータ) (2023-11-06T13:01:17Z) - PlantPlotGAN: A Physics-Informed Generative Adversarial Network for
Plant Disease Prediction [2.7409168462107347]
リアルな植生指標を持つ合成多スペクトルプロット画像を作成することができる物理インフォームド・ジェネレーティブ・モデルであるPlanetPlotGANを提案する。
その結果, PlantPlotGANから生成された合成画像はFr'echet開始距離に関して最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2023-10-27T16:56:28Z) - Improving FHB Screening in Wheat Breeding Using an Efficient Transformer
Model [0.0]
フサリウム・ヘッド・ブライト(Fusarium head blight)は、小さな穀物に毎年重大な経済的損失をもたらす壊滅的な病気である。
FHBの早期検出のために,教師付き機械学習アルゴリズムを用いて画像処理技術を開発した。
変圧器モデルにU-Netネットワークの局所表現機能を統合するために,新しいContext Bridgeを提案する。
論文 参考訳(メタデータ) (2023-08-07T15:44:58Z) - Detection of healthy and diseased crops in drone captured images using
Deep Learning [0.0]
病気によって引き起こされる植物の正常な状態の破壊は、しばしば本質的な植物活動に干渉する。
ドローン画像を用いた植物病の効率的な検出のための深層学習に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2023-05-22T21:15:12Z) - Ultrasound Signal Processing: From Models to Deep Learning [64.56774869055826]
医用超音波画像は、信頼性と解釈可能な画像再構成を提供するために、高品質な信号処理に大きく依存している。
データ駆動方式で最適化されたディープラーニングベースの手法が人気を集めている。
比較的新しいパラダイムは、データ駆動型ディープラーニングの活用とドメイン知識の活用という2つのパワーを組み合わせたものだ。
論文 参考訳(メタデータ) (2022-04-09T13:04:36Z) - Unsupervised deep learning techniques for powdery mildew recognition
based on multispectral imaging [63.62764375279861]
本稿では,キュウリ葉の粉状ミドウを自動的に認識する深層学習手法を提案する。
マルチスペクトルイメージングデータに適用した教師なし深層学習技術に焦点をあてる。
本稿では, オートエンコーダアーキテクチャを用いて, 疾患検出のための2つの手法を提案する。
論文 参考訳(メタデータ) (2021-12-20T13:29:13Z) - A two-step machine learning approach for crop disease detection: an
application of GAN and UAV technology [0.0]
本稿では,低忠実度および高忠実度画像を連続的に解析する2段階の機械学習手法を提案する。
その結果,高忠実度系では96.3%,低忠実度系では75.5%の信頼度が得られた。
論文 参考訳(メタデータ) (2021-09-19T03:51:20Z) - Potato Crop Stress Identification in Aerial Images using Deep
Learning-based Object Detection [60.83360138070649]
本稿では, 深層ニューラルネットワークを用いたジャガイモの空中画像解析手法を提案する。
主な目的は、植物レベルでの健康作物とストレス作物の自動空間認識を実証することである。
実験により、フィールド画像中の健康植物とストレス植物を識別し、平均Dice係数0.74を達成できることを示した。
論文 参考訳(メタデータ) (2021-06-14T21:57:40Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z) - Rectified Meta-Learning from Noisy Labels for Robust Image-based Plant
Disease Diagnosis [64.82680813427054]
植物病は食料安全保障と作物生産に対する主要な脅威の1つである。
1つの一般的なアプローチは、葉画像分類タスクとしてこの問題を変換し、強力な畳み込みニューラルネットワーク(CNN)によって対処できる。
本稿では,正規化メタ学習モジュールを共通CNNパラダイムに組み込んだ新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-17T09:51:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。