Spatial Process Approximations: Assessing Their Necessity
- URL: http://arxiv.org/abs/2311.03201v1
- Date: Mon, 6 Nov 2023 15:46:03 GMT
- Title: Spatial Process Approximations: Assessing Their Necessity
- Authors: Hao Zhang
- Abstract summary: In spatial statistics and machine learning, the kernel matrix plays a pivotal role in prediction, classification, and maximum likelihood estimation.
A review of current methodologies for managing large spatial data indicates that some fail to address this ill-conditioning problem.
This paper introduces various optimality criteria and provides solutions for each.
- Score: 5.8666339171606445
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In spatial statistics and machine learning, the kernel matrix plays a pivotal
role in prediction, classification, and maximum likelihood estimation. A
thorough examination reveals that for large sample sizes, the kernel matrix
becomes ill-conditioned, provided the sampling locations are fairly evenly
distributed. This condition poses significant challenges to numerical
algorithms used in prediction and estimation computations and necessitates an
approximation to prediction and the Gaussian likelihood. A review of current
methodologies for managing large spatial data indicates that some fail to
address this ill-conditioning problem. Such ill-conditioning often results in
low-rank approximations of the stochastic processes. This paper introduces
various optimality criteria and provides solutions for each.
Related papers
- A sparse PAC-Bayesian approach for high-dimensional quantile prediction [0.0]
This paper presents a novel probabilistic machine learning approach for high-dimensional quantile prediction.
It uses a pseudo-Bayesian framework with a scaled Student-t prior and Langevin Monte Carlo for efficient computation.
Its effectiveness is validated through simulations and real-world data, where it performs competitively against established frequentist and Bayesian techniques.
arXiv Detail & Related papers (2024-09-03T08:01:01Z) - Probabilistic Iterative Hard Thresholding for Sparse Learning [2.5782973781085383]
We present an approach towards solving expectation objective optimization problems with cardinality constraints.
We prove convergence of the underlying process, and demonstrate the performance on two Machine Learning problems.
arXiv Detail & Related papers (2024-09-02T18:14:45Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers.
We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art.
In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
arXiv Detail & Related papers (2024-01-29T02:08:40Z) - FunQuant: A R package to perform quantization in the context of rare
events and time-consuming simulations [0.0]
Quantization summarizes continuous distributions by calculating a discrete approximation.
Among the widely adopted methods for data quantization is Lloyd's algorithm, which partitions the space into Vorono"i cells, that can be seen as clusters.
arXiv Detail & Related papers (2023-08-18T08:34:45Z) - Sampling from Gaussian Process Posteriors using Stochastic Gradient
Descent [43.097493761380186]
gradient algorithms are an efficient method of approximately solving linear systems.
We show that gradient descent produces accurate predictions, even in cases where it does not converge quickly to the optimum.
Experimentally, gradient descent achieves state-of-the-art performance on sufficiently large-scale or ill-conditioned regression tasks.
arXiv Detail & Related papers (2023-06-20T15:07:37Z) - Deep Subspace Encoders for Nonlinear System Identification [0.0]
We propose a method which uses a truncated prediction loss and a subspace encoder for state estimation.
We show that, under mild conditions, the proposed method is locally consistent, increases optimization stability, and achieves increased data efficiency.
arXiv Detail & Related papers (2022-10-26T16:04:38Z) - Estimating leverage scores via rank revealing methods and randomization [50.591267188664666]
We study algorithms for estimating the statistical leverage scores of rectangular dense or sparse matrices of arbitrary rank.
Our approach is based on combining rank revealing methods with compositions of dense and sparse randomized dimensionality reduction transforms.
arXiv Detail & Related papers (2021-05-23T19:21:55Z) - Scalable Marginal Likelihood Estimation for Model Selection in Deep
Learning [78.83598532168256]
Marginal-likelihood based model-selection is rarely used in deep learning due to estimation difficulties.
Our work shows that marginal likelihoods can improve generalization and be useful when validation data is unavailable.
arXiv Detail & Related papers (2021-04-11T09:50:24Z) - Pathwise Conditioning of Gaussian Processes [72.61885354624604]
Conventional approaches for simulating Gaussian process posteriors view samples as draws from marginal distributions of process values at finite sets of input locations.
This distribution-centric characterization leads to generative strategies that scale cubically in the size of the desired random vector.
We show how this pathwise interpretation of conditioning gives rise to a general family of approximations that lend themselves to efficiently sampling Gaussian process posteriors.
arXiv Detail & Related papers (2020-11-08T17:09:37Z) - Real-Time Regression with Dividing Local Gaussian Processes [62.01822866877782]
Local Gaussian processes are a novel, computationally efficient modeling approach based on Gaussian process regression.
Due to an iterative, data-driven division of the input space, they achieve a sublinear computational complexity in the total number of training points in practice.
A numerical evaluation on real-world data sets shows their advantages over other state-of-the-art methods in terms of accuracy as well as prediction and update speed.
arXiv Detail & Related papers (2020-06-16T18:43:31Z) - A General Method for Robust Learning from Batches [56.59844655107251]
We consider a general framework of robust learning from batches, and determine the limits of both classification and distribution estimation over arbitrary, including continuous, domains.
We derive the first robust computationally-efficient learning algorithms for piecewise-interval classification, and for piecewise-polynomial, monotone, log-concave, and gaussian-mixture distribution estimation.
arXiv Detail & Related papers (2020-02-25T18:53:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.