On the Model Update Strategies for Supervised Learning in AIOps Solutions
- URL: http://arxiv.org/abs/2311.03213v2
- Date: Thu, 11 Apr 2024 20:12:10 GMT
- Title: On the Model Update Strategies for Supervised Learning in AIOps Solutions
- Authors: Yingzhe Lyu, Heng Li, Zhen Ming, Jiang, Ahmed E. Hassan,
- Abstract summary: AIOps (Artificial Intelligence for IT Operations) solutions leverage the massive data produced during the operation of large-scale systems and machine learning models.
As operation data produced in the field are constantly evolving due to factors such as the changing operational environment and user base, the models in AIOps solutions need to be constantly maintained after deployment.
We empirically assessed five different types of model update strategies for supervised learning regarding their performance, updating cost, and stability.
- Score: 30.177330291396277
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: AIOps (Artificial Intelligence for IT Operations) solutions leverage the massive data produced during the operation of large-scale systems and machine learning models to assist software engineers in their system operations. As operation data produced in the field are constantly evolving due to factors such as the changing operational environment and user base, the models in AIOps solutions need to be constantly maintained after deployment. While prior works focus on innovative modeling techniques to improve the performance of AIOps models before releasing them into the field, when and how to update AIOps models remain an under-investigated topic. In this work, we performed a case study on three large-scale public operation data and empirically assessed five different types of model update strategies for supervised learning regarding their performance, updating cost, and stability. We observed that active model update strategies (e.g., periodical retraining, concept drift guided retraining, time-based model ensembles, and online learning) achieve better and more stable performance than a stationary model. Particularly, applying sophisticated model update strategies could provide better performance, efficiency, and stability than simply retraining AIOps models periodically. In addition, we observed that, although some update strategies can save model training time, they significantly sacrifice model testing time, which could hinder their applications in AIOps solutions where the operation data arrive at high pace and volume and where immediate inferences are required. Our findings highlight that practitioners should consider the evolution of operation data and actively maintain AIOps models over time. Our observations can also guide researchers and practitioners in investigating more efficient and effective model update strategies that fit in the context of AIOps.
Related papers
- On conditional diffusion models for PDE simulations [53.01911265639582]
We study score-based diffusion models for forecasting and assimilation of sparse observations.
We propose an autoregressive sampling approach that significantly improves performance in forecasting.
We also propose a new training strategy for conditional score-based models that achieves stable performance over a range of history lengths.
arXiv Detail & Related papers (2024-10-21T18:31:04Z) - Structuring a Training Strategy to Robustify Perception Models with Realistic Image Augmentations [1.5723316845301678]
This report introduces a novel methodology for training with augmentations to enhance model robustness and performance in such conditions.
We present a comprehensive framework that includes identifying weak spots in Machine Learning models, selecting suitable augmentations, and devising effective training strategies.
Experimental results demonstrate improvements in model performance, as measured by commonly used metrics such as mean Average Precision (mAP) and mean Intersection over Union (mIoU) on open-source object detection and semantic segmentation models and datasets.
arXiv Detail & Related papers (2024-08-30T14:15:48Z) - EsaCL: Efficient Continual Learning of Sparse Models [10.227171407348326]
Key challenge in the continual learning setting is to efficiently learn a sequence of tasks without forgetting how to perform previously learned tasks.
We propose a new method for efficient continual learning of sparse models (EsaCL) that can automatically prune redundant parameters without adversely impacting the model's predictive power.
arXiv Detail & Related papers (2024-01-11T04:59:44Z) - Temporal Knowledge Distillation for Time-Sensitive Financial Services
Applications [7.1795069620810805]
Anomaly detection is frequently used in key compliance and risk functions such as financial crime detection fraud and cybersecurity.
Keeping up with the rapid changes by retraining the models with the latest data patterns introduces pressures in balancing the historical and current patterns.
The proposed approach provides advantages in retraining times while improving the model performance.
arXiv Detail & Related papers (2023-12-28T03:04:30Z) - Not All Steps are Equal: Efficient Generation with Progressive Diffusion
Models [62.155612146799314]
We propose a novel two-stage training strategy termed Step-Adaptive Training.
In the initial stage, a base denoising model is trained to encompass all timesteps.
We partition the timesteps into distinct groups, fine-tuning the model within each group to achieve specialized denoising capabilities.
arXiv Detail & Related papers (2023-12-20T03:32:58Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
We propose QualEval, which augments quantitative scalar metrics with automated qualitative evaluation as a vehicle for model improvement.
QualEval uses a powerful LLM reasoner and our novel flexible linear programming solver to generate human-readable insights.
We demonstrate that leveraging its insights, for example, improves the absolute performance of the Llama 2 model by up to 15% points relative.
arXiv Detail & Related papers (2023-11-06T00:21:44Z) - Learn from the Past: A Proxy Guided Adversarial Defense Framework with
Self Distillation Regularization [53.04697800214848]
Adversarial Training (AT) is pivotal in fortifying the robustness of deep learning models.
AT methods, relying on direct iterative updates for target model's defense, frequently encounter obstacles such as unstable training and catastrophic overfitting.
We present a general proxy guided defense framework, LAST' (bf Learn from the Pbf ast)
arXiv Detail & Related papers (2023-10-19T13:13:41Z) - PILOT: A Pre-Trained Model-Based Continual Learning Toolbox [71.63186089279218]
This paper introduces a pre-trained model-based continual learning toolbox known as PILOT.
On the one hand, PILOT implements some state-of-the-art class-incremental learning algorithms based on pre-trained models, such as L2P, DualPrompt, and CODA-Prompt.
On the other hand, PILOT fits typical class-incremental learning algorithms within the context of pre-trained models to evaluate their effectiveness.
arXiv Detail & Related papers (2023-09-13T17:55:11Z) - Learning Objective-Specific Active Learning Strategies with Attentive
Neural Processes [72.75421975804132]
Learning Active Learning (LAL) suggests to learn the active learning strategy itself, allowing it to adapt to the given setting.
We propose a novel LAL method for classification that exploits symmetry and independence properties of the active learning problem.
Our approach is based on learning from a myopic oracle, which gives our model the ability to adapt to non-standard objectives.
arXiv Detail & Related papers (2023-09-11T14:16:37Z) - Learning a model is paramount for sample efficiency in reinforcement
learning control of PDEs [5.488334211013093]
We show that learning an actuated model in parallel to training the RL agent significantly reduces the total amount of required data sampled from the real system.
We also show that iteratively updating the model is of major importance to avoid biases in the RL training.
arXiv Detail & Related papers (2023-02-14T16:14:39Z) - DST: Dynamic Substitute Training for Data-free Black-box Attack [79.61601742693713]
We propose a novel dynamic substitute training attack method to encourage substitute model to learn better and faster from the target model.
We introduce a task-driven graph-based structure information learning constrain to improve the quality of generated training data.
arXiv Detail & Related papers (2022-04-03T02:29:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.