論文の概要: ALYMPICS: LLM Agents Meet Game Theory -- Exploring Strategic
Decision-Making with AI Agents
- arxiv url: http://arxiv.org/abs/2311.03220v4
- Date: Tue, 16 Jan 2024 07:12:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-18 01:00:11.598261
- Title: ALYMPICS: LLM Agents Meet Game Theory -- Exploring Strategic
Decision-Making with AI Agents
- Title(参考訳): alympics: llmエージェントがゲーム理論を満たす - aiエージェントによる戦略的意思決定の探求
- Authors: Shaoguang Mao, Yuzhe Cai, Yan Xia, Wenshan Wu, Xun Wang, Fengyi Wang,
Tao Ge, Furu Wei
- Abstract要約: Alympicsは、ゲーム理論の研究にLarge Language Model (LLM)エージェントを利用する、体系的なシミュレーションフレームワークである。
Alympicsは、複雑なゲーム理論の問題を研究するための汎用的なプラットフォームを作成する。
- 参考スコア(独自算出の注目度): 77.34720446306419
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces Alympics (Olympics for Agents), a systematic simulation
framework utilizing Large Language Model (LLM) agents for game theory research.
Alympics creates a versatile platform for studying complex game theory
problems, bridging the gap between theoretical game theory and empirical
investigations by providing a controlled environment for simulating human-like
strategic interactions with LLM agents. In our pilot case study, the "Water
Allocation Challenge," we explore Alympics through a challenging strategic game
focused on the multi-round auction on scarce survival resources. This study
demonstrates the framework's ability to qualitatively and quantitatively
analyze game determinants, strategies, and outcomes. Additionally, we conduct a
comprehensive human assessment and an in-depth evaluation of LLM agents in
strategic decision-making scenarios. Our findings not only expand the
understanding of LLM agents' proficiency in emulating human strategic behavior
but also highlight their potential in advancing game theory knowledge, thereby
enriching our understanding of both game theory and empowering further research
into strategic decision-making domains with LLM agents. Codes, prompts, and all
related resources are available at https://github.com/microsoft/Alympics.
- Abstract(参考訳): 本稿では,ゲーム理論研究にLarge Language Model (LLM) エージェントを用いたシステムシミュレーションフレームワークであるAlympics(Olympics for Agents)を紹介する。
alympicsは、複雑なゲーム理論の問題を研究するための汎用プラットフォームを作成し、llmエージェントとの人間のような戦略的相互作用をシミュレートするための制御環境を提供することで、理論ゲーム理論と経験的調査の間のギャップを橋渡しする。
パイロットケーススタディ“Water Allocation Challenge”では,少ない生存資源の多ラウンドオークションに焦点を当てた,Alympicsの挑戦的な戦略ゲームを通じて,Alympicsを探索する。
本研究は,ゲーム決定要因,戦略,成果を質的かつ定量的に分析するフレームワークの能力を示す。
さらに,戦略的意思決定シナリオにおいて,総合的な人間評価とllmエージェントの深い評価を行う。
ヒトの戦略行動のエミュレートにおけるLSMエージェントの能力の理解を深めるだけでなく、ゲーム理論の知識を進化させる可能性も浮き彫りにし、ゲーム理論の理解を深め、LSMエージェントによる戦略的意思決定領域のさらなる研究に力を入れている。
コード、プロンプト、関連するすべてのリソースはhttps://github.com/microsoft/Alympics.comで入手できる。
関連論文リスト
- Game-theoretic LLM: Agent Workflow for Negotiation Games [30.83905391503607]
本稿では,大規模言語モデル(LLM)の戦略的意思決定文脈における合理性について検討する。
LLMの推論と意思決定を導く複数のゲーム理論を設計する。
この発見は、より堅牢で戦略的に健全なAIエージェントの開発に影響を及ぼす。
論文 参考訳(メタデータ) (2024-11-08T22:02:22Z) - Evaluating and Enhancing LLMs Agent based on Theory of Mind in Guandan: A Multi-Player Cooperative Game under Imperfect Information [36.11862095329315]
大規模言語モデル(LLM)は、不完全な情報で単純なゲームを扱うことに成功している。
本研究では,オープンソースのLLMとAPIベースのLLMが獲得した知識を,洗練されたテキストベースのゲームに適用する可能性について検討する。
論文 参考訳(メタデータ) (2024-08-05T15:36:46Z) - GTBench: Uncovering the Strategic Reasoning Limitations of LLMs via Game-Theoretic Evaluations [87.99872683336395]
大規模言語モデル(LLM)は、重要な現実世界のアプリケーションに統合される。
本稿では,LLMの競合環境における推論能力について検討する。
まず,広く認識されている10のタスクを構成する言語駆動型環境であるGTBenchを提案する。
論文 参考訳(メタデータ) (2024-02-19T18:23:36Z) - K-Level Reasoning: Establishing Higher Order Beliefs in Large Language Models for Strategic Reasoning [76.3114831562989]
マルチエージェント環境で戦略を動的に適応させるためには、LLM(Large Language Model)エージェントが必要である。
我々は,「K-Level Reasoning with Large Language Models (K-R)」という新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-02T16:07:05Z) - Large Language Models Play StarCraft II: Benchmarks and A Chain of Summarization Approach [7.693497788883165]
VoyageやMetaGPTのような大規模言語モデル(LLM)エージェントは、複雑なタスクを解く大きな可能性を示す。
本稿では,生観測処理のための単一フレーム要約と,ゲーム情報解析のための多フレーム要約を含む要約手法を提案する。
1. LLMはStarCraft IIのシナリオに対処するのに必要な知識と複雑な計画能力を持っている; 2. 人間の専門家は、LLMエージェントのパフォーマンスは、StarCraft IIを8年間プレイした平均的なプレイヤーのそれに近いと考えている; 3. LLMエージェントはAIで構築されたエージェントを倒すことができる。
論文 参考訳(メタデータ) (2023-12-19T05:27:16Z) - Leveraging Word Guessing Games to Assess the Intelligence of Large
Language Models [105.39236338147715]
この論文は人気のある言語ゲーム『Who is Spy』にインスパイアされている。
本研究は,LEMの表現と変形能力を評価するためのDEEPを開発する。
次に、インタラクティブなマルチエージェントフレームワークであるSpyGameを紹介します。
論文 参考訳(メタデータ) (2023-10-31T14:37:42Z) - The Rise and Potential of Large Language Model Based Agents: A Survey [91.71061158000953]
大規模言語モデル(LLM)は、人工知能(AGI)の潜在的な火花と見なされる
まず、エージェントの概念を哲学的起源からAI開発まで追跡し、LLMがエージェントに適した基盤である理由を説明します。
単一エージェントシナリオ,マルチエージェントシナリオ,ヒューマンエージェント協調の3つの側面において,LLMベースのエージェントの広範な応用について検討する。
論文 参考訳(メタデータ) (2023-09-14T17:12:03Z) - Strategic Reasoning with Language Models [35.63300060111918]
戦略的推論は、エージェントが様々な状況において他のエージェントと協力し、コミュニケーションし、競合することを可能にする。
既存の戦略ゲームに対するアプローチは、広範なトレーニングに依存しており、再訓練なしに新しいシナリオやゲームに一般化しない戦略を生み出している。
本稿では,AIエージェントの戦略的推論を可能にするために,事前訓練された大規模言語モデルと数発の連鎖例を用いたアプローチを提案する。
論文 参考訳(メタデータ) (2023-05-30T16:09:19Z) - SPRING: Studying the Paper and Reasoning to Play Games [102.5587155284795]
我々は,ゲーム本来の学術論文を読み取るための新しいアプローチ,SPRINGを提案し,大言語モデル(LLM)を通してゲームの説明とプレイの知識を利用する。
実験では,クラフトオープンワールド環境の設定下で,異なる形態のプロンプトによって引き起こされる文脈内「推論」の品質について検討した。
我々の実験は、LLMが一貫したチェーン・オブ・シークレットによって誘導されると、洗練された高レベル軌道の完成に大きな可能性があることを示唆している。
論文 参考訳(メタデータ) (2023-05-24T18:14:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。