論文の概要: Learning Disentangled Speech Representations
- arxiv url: http://arxiv.org/abs/2311.03389v1
- Date: Sat, 4 Nov 2023 04:54:17 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-08 18:27:19.106354
- Title: Learning Disentangled Speech Representations
- Title(参考訳): 異節音声表現の学習
- Authors: Yusuf Brima, Ulf Krumnack, Simone Pika and Gunther Heidemann
- Abstract要約: 多くのアプリケーション領域において重要でありながら、音声からのアンタングル表現学習は依然として限られている。
主な課題は、メソッドを評価するための既知の生成因子を持つ音声データセットの欠如である。
本稿では, 音声表現の非接触化に関する研究を可能にする基礎的真理因子を用いた合成音声データセットSynSpeechを提案する。
- 参考スコア(独自算出の注目度): 0.45060992929802207
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Disentangled representation learning from speech remains limited despite its
importance in many application domains. A key challenge is the lack of speech
datasets with known generative factors to evaluate methods. This paper proposes
SynSpeech: a novel synthetic speech dataset with ground truth factors enabling
research on disentangling speech representations. We plan to present a
comprehensive study evaluating supervised techniques using established
supervised disentanglement metrics. This benchmark dataset and framework
address the gap in the rigorous evaluation of state-of-the-art disentangled
speech representation learning methods. Our findings will provide insights to
advance this underexplored area and enable more robust speech representations.
- Abstract(参考訳): 多くのアプリケーション領域において重要でありながら、音声からのアンタングル表現学習は限定的である。
主要な課題は、メソッドを評価するための既知の生成因子を持つ音声データセットの欠如である。
本稿では, 音声表現の非接触化に関する研究を可能にする基礎的真理因子を用いた合成音声データセットSynSpeechを提案する。
本研究は,教師付きディスタングルメント指標を用いて教師付き手法の評価を行う。
このベンチマークデータセットとフレームワークは、最先端不連続音声表現学習法の厳密な評価のギャップに対処する。
我々の発見は、この未探索領域を前進させ、より堅牢な音声表現を可能にする洞察を与える。
関連論文リスト
- STAB: Speech Tokenizer Assessment Benchmark [57.45234921100835]
音声を離散トークンとして表現することは、音声をテキストによく似たフォーマットに変換するためのフレームワークを提供する。
Speech Tokenizer Assessment Benchmark(STAB)は,音声トークンを包括的に評価するシステム評価フレームワークである。
我々はSTABのメトリクスを評価し、これを音声タスクやトークン化ツールの選択の範囲でダウンストリームタスクのパフォーマンスと相関付けする。
論文 参考訳(メタデータ) (2024-09-04T02:20:59Z) - How Well Do Text Embedding Models Understand Syntax? [50.440590035493074]
テキスト埋め込みモデルが幅広い構文的文脈にまたがって一般化する能力は、まだ解明されていない。
その結果,既存のテキスト埋め込みモデルは,これらの構文的理解課題に十分対応していないことが明らかとなった。
多様な構文シナリオにおけるテキスト埋め込みモデルの一般化能力を高めるための戦略を提案する。
論文 参考訳(メタデータ) (2023-11-14T08:51:00Z) - EXPRESSO: A Benchmark and Analysis of Discrete Expressive Speech
Resynthesis [49.04496602282718]
テキストなし音声合成のための高品質な表現型音声データセットであるExpressoを紹介する。
このデータセットは、26の自発的表現スタイルで描画された読み上げ音声と即興対話の両方を含む。
自己監督型離散エンコーダの自動計測値を用いて再生品質を評価する。
論文 参考訳(メタデータ) (2023-08-10T17:41:19Z) - An analysis on the effects of speaker embedding choice in non
auto-regressive TTS [4.619541348328938]
本稿では,非自己回帰的分解型マルチ話者音声合成アーキテクチャが,異なる話者埋め込みセットに存在する情報をどのように活用するかを理解するための最初の試みを紹介する。
使用済みの埋め込みと学習戦略にかかわらず、ネットワークは様々な話者識別を等しく扱うことができることを示す。
論文 参考訳(メタデータ) (2023-07-19T10:57:54Z) - Zero-shot text-to-speech synthesis conditioned using self-supervised
speech representation model [13.572330725278066]
提案手法の新たなポイントは、大量のデータで訓練された音声表現から組込みベクトルを得るためにSSLモデルを直接利用することである。
この不整合埋め込みにより、未知話者の再生性能が向上し、異なる音声によるリズム伝達が実現される。
論文 参考訳(メタデータ) (2023-04-24T10:15:58Z) - Analysis of Joint Speech-Text Embeddings for Semantic Matching [3.6423306784901235]
ペア音声と書き起こし入力の距離を最小化することにより,セマンティックマッチングのために訓練された共同音声テキスト埋め込み空間について検討する。
我々は,事前学習とマルチタスクの両方のシナリオを通じて,音声認識を組み込む方法を拡張した。
論文 参考訳(メタデータ) (2022-04-04T04:50:32Z) - Deep Neural Convolutive Matrix Factorization for Articulatory
Representation Decomposition [48.56414496900755]
この研究は、コンボリューティブスパース行列分解のニューラル実装を用いて、調音データを解釈可能なジェスチャーとジェスチャースコアに分解する。
音素認識実験も実施され、ジェスチャースコアが実際に音韻情報のコード化に成功していることが示された。
論文 参考訳(メタデータ) (2022-04-01T14:25:19Z) - SPLAT: Speech-Language Joint Pre-Training for Spoken Language
Understanding [61.02342238771685]
音声理解には、入力音響信号を解析してその言語内容を理解し、予測するモデルが必要である。
大規模無注釈音声やテキストからリッチな表現を学習するために,様々な事前学習手法が提案されている。
音声と言語モジュールを協調的に事前学習するための,新しい半教師付き学習フレームワークであるSPLATを提案する。
論文 参考訳(メタデータ) (2020-10-05T19:29:49Z) - Continuous speech separation: dataset and analysis [52.10378896407332]
自然な会話では、音声信号は連続的であり、重複成分と重複成分の両方を含む。
本稿では,連続音声分離アルゴリズムを評価するためのデータセットとプロトコルについて述べる。
論文 参考訳(メタデータ) (2020-01-30T18:01:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。