論文の概要: STAB: Speech Tokenizer Assessment Benchmark
- arxiv url: http://arxiv.org/abs/2409.02384v1
- Date: Wed, 4 Sep 2024 02:20:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-05 20:41:08.401972
- Title: STAB: Speech Tokenizer Assessment Benchmark
- Title(参考訳): STAB:音声トケナイザ評価ベンチマーク
- Authors: Shikhar Vashishth, Harman Singh, Shikhar Bharadwaj, Sriram Ganapathy, Chulayuth Asawaroengchai, Kartik Audhkhasi, Andrew Rosenberg, Ankur Bapna, Bhuvana Ramabhadran,
- Abstract要約: 音声を離散トークンとして表現することは、音声をテキストによく似たフォーマットに変換するためのフレームワークを提供する。
Speech Tokenizer Assessment Benchmark(STAB)は,音声トークンを包括的に評価するシステム評価フレームワークである。
我々はSTABのメトリクスを評価し、これを音声タスクやトークン化ツールの選択の範囲でダウンストリームタスクのパフォーマンスと相関付けする。
- 参考スコア(独自算出の注目度): 57.45234921100835
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Representing speech as discrete tokens provides a framework for transforming speech into a format that closely resembles text, thus enabling the use of speech as an input to the widely successful large language models (LLMs). Currently, while several speech tokenizers have been proposed, there is ambiguity regarding the properties that are desired from a tokenizer for specific downstream tasks and its overall generalizability. Evaluating the performance of tokenizers across different downstream tasks is a computationally intensive effort that poses challenges for scalability. To circumvent this requirement, we present STAB (Speech Tokenizer Assessment Benchmark), a systematic evaluation framework designed to assess speech tokenizers comprehensively and shed light on their inherent characteristics. This framework provides a deeper understanding of the underlying mechanisms of speech tokenization, thereby offering a valuable resource for expediting the advancement of future tokenizer models and enabling comparative analysis using a standardized benchmark. We evaluate the STAB metrics and correlate this with downstream task performance across a range of speech tasks and tokenizer choices.
- Abstract(参考訳): 音声を離散トークンとして表現することは、音声をテキストによく似たフォーマットに変換するためのフレームワークを提供し、広く成功した大言語モデル(LLM)への入力として音声を使用することを可能にする。
現在、いくつかの音声トークン化器が提案されているが、特定の下流タスクに対するトークン化器から要求される特性とその全体的な一般化可能性についてあいまいさがある。
さまざまなダウンストリームタスクにわたるトークン処理のパフォーマンスを評価することは、スケーラビリティの課題を提起する計算集約的な取り組みである。
この要件を回避するため,STAB (Speech Tokenizer Assessment Benchmark) を提案する。
このフレームワークは、音声トークン化の基盤となるメカニズムをより深く理解し、将来のトークン化モデルの進歩を早めるための貴重なリソースを提供し、標準化されたベンチマークによる比較分析を可能にする。
我々はSTABのメトリクスを評価し、これを音声タスクやトークン化ツールの選択の範囲でダウンストリームタスクのパフォーマンスと相関付けする。
関連論文リスト
- BEST-STD: Bidirectional Mamba-Enhanced Speech Tokenization for Spoken Term Detection [8.303512060791736]
スポット項の検出は、フレームレベルの特徴と計算集約的なDTWベースのテンプレートマッチングに依存しているため、しばしば妨げられる。
本稿では,音声を個別の話者に依存しないセマンティックトークンに符号化する手法を提案する。
これにより、テキストベースの検索アルゴリズムによる高速検索が容易になり、語彙外用語を効果的に扱うことができる。
論文 参考訳(メタデータ) (2024-11-21T13:05:18Z) - The Foundations of Tokenization: Statistical and Computational Concerns [51.370165245628975]
トークン化は、NLPパイプラインにおける重要なステップである。
NLPにおける標準表現法としての重要性は認識されているが、トークン化の理論的基盤はまだ完全には理解されていない。
本稿では,トークン化モデルの表現と解析のための統一的な形式的枠組みを提案することによって,この理論的ギャップに対処することに貢献している。
論文 参考訳(メタデータ) (2024-07-16T11:12:28Z) - CosyVoice: A Scalable Multilingual Zero-shot Text-to-speech Synthesizer based on Supervised Semantic Tokens [49.569695524535454]
本稿では, ベクトル量子化をエンコーダに挿入することにより, 多言語音声認識モデルから導出される, 教師付きセマンティックトークンを用いた音声表現を提案する。
トークンをベースとした拡張性のあるゼロショットTSシンセサイザーであるCosyVoiceは,テキスト・ツー・ツー・ケン生成のためのLLMと,トークン・ツー・音声合成のための条件付きフローマッチングモデルから構成される。
論文 参考訳(メタデータ) (2024-07-07T15:16:19Z) - DeSTA: Enhancing Speech Language Models through Descriptive Speech-Text Alignment [82.86363991170546]
本稿では、音声キャプションを利用して音声とテキストのモダリティのギャップを埋める記述型音声テキストアライメント手法を提案する。
我々のモデルはDynamic-SUPERBベンチマークで優れた性能を示し、特に目に見えないタスクに一般化する。
これらの知見は、説明豊かな音声キャプションを組み込むことにより、指示追従型SLMを再構築する可能性を強調した。
論文 参考訳(メタデータ) (2024-06-27T03:52:35Z) - DASB -- Discrete Audio and Speech Benchmark [12.02056212008393]
我々は、様々なタスクで離散オーディオトークンをベンチマークするためのリーダーボードである、離散オーディオおよび音声ベンチマーク(DASB)をリリースする。
その結果, 意味トークンは, 識別的, 生成的タスクにおいて, 圧縮トークンよりも優れていた。
しかし、セマンティックトークンと標準的な連続表現の間のパフォーマンスのギャップは依然として大きい。
論文 参考訳(メタデータ) (2024-06-20T13:23:27Z) - EmphAssess : a Prosodic Benchmark on Assessing Emphasis Transfer in Speech-to-Speech Models [25.683827726880594]
EmphAssessは,音声合成モデルの韻律強調を符号化し再現する能力を評価するためのベンチマークである。
音声合成と音声合成の2つの課題に適用する。
どちらの場合も、ベンチマークは、モデルが音声入力の強調を符号化し、出力で正確に再現する能力を評価する。
評価パイプラインの一部として、フレームや単語レベルで強調を分類する新しいモデルであるEmphaClassを紹介する。
論文 参考訳(メタデータ) (2023-12-21T17:47:33Z) - Learning Disentangled Speech Representations [0.412484724941528]
SynSpeechは、非絡み合った音声表現の研究を可能にするために設計された、新しい大規模合成音声データセットである。
本稿では, 線形探索と教師付きアンタングル化指標を併用して, アンタングル化表現学習手法を評価する枠組みを提案する。
SynSpeechは、さまざまな要因のベンチマークを促進し、ジェンダーや話し方のようなより単純な機能の切り離しを期待できると同時に、話者アイデンティティのような複雑な属性を分離する際の課題を強調します。
論文 参考訳(メタデータ) (2023-11-04T04:54:17Z) - MetricPrompt: Prompting Model as a Relevance Metric for Few-shot Text
Classification [65.51149771074944]
MetricPromptは、数発のテキスト分類タスクをテキストペア関連性推定タスクに書き換えることで、言語設計の難易度を緩和する。
広範に使われている3つのテキスト分類データセットを4つのショット・セッティングで実験する。
結果から,MetricPromptは,手動弁証法や自動弁証法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2023-06-15T06:51:35Z) - SLUE Phase-2: A Benchmark Suite of Diverse Spoken Language Understanding
Tasks [88.4408774253634]
音声言語理解(SLU)タスクは、音声研究コミュニティで何十年にもわたって研究されてきた。
SLUタスクベンチマークはそれほど多くはなく、既存のベンチマークの多くは、すべての研究者が自由に利用できないデータを使っている。
最近の研究は、いくつかのタスクにそのようなベンチマークを導入し始めている。
論文 参考訳(メタデータ) (2022-12-20T18:39:59Z) - Learning utterance-level representations through token-level acoustic
latents prediction for Expressive Speech Synthesis [3.691712391306624]
細粒度潜在空間もまた粗粒度情報を捉えており、これは多彩な韻律表現を捉えるために潜在空間の次元が大きくなるにつれて明らかである。
本稿では、まず、豊富な音声属性をトークンレベル潜在空間にキャプチャし、入力テキストを付与した先行ネットワークを個別に訓練し、前ステップで抽出した音素レベル後潜在音を予測するために、発話レベル表現を学習することでこの問題を軽減する。
論文 参考訳(メタデータ) (2022-11-01T15:17:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。