Multi-Resolution Diffusion for Privacy-Sensitive Recommender Systems
- URL: http://arxiv.org/abs/2311.03488v4
- Date: Wed, 19 Jun 2024 06:23:55 GMT
- Title: Multi-Resolution Diffusion for Privacy-Sensitive Recommender Systems
- Authors: Derek Lilienthal, Paul Mello, Magdalini Eirinaki, Stas Tiomkin,
- Abstract summary: We introduce a Score-based Diffusion Recommendation Module (SDRM), which captures the intricate patterns of real-world datasets required for training highly accurate recommender systems.
SDRM allows for the generation of synthetic data that can replace existing datasets to preserve user privacy, or augment existing datasets to address excessive data sparsity.
Our method outperforms competing baselines such as generative adversarial networks, variational autoencoders, and recently proposed diffusion models in synthesizing various datasets to replace or augment the original data by an average improvement of 4.30% in Recall@k and 4.65% in NDCG@k.
- Score: 2.812395851874055
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While recommender systems have become an integral component of the Web experience, their heavy reliance on user data raises privacy and security concerns. Substituting user data with synthetic data can address these concerns, but accurately replicating these real-world datasets has been a notoriously challenging problem. Recent advancements in generative AI have demonstrated the impressive capabilities of diffusion models in generating realistic data across various domains. In this work we introduce a Score-based Diffusion Recommendation Module (SDRM), which captures the intricate patterns of real-world datasets required for training highly accurate recommender systems. SDRM allows for the generation of synthetic data that can replace existing datasets to preserve user privacy, or augment existing datasets to address excessive data sparsity. Our method outperforms competing baselines such as generative adversarial networks, variational autoencoders, and recently proposed diffusion models in synthesizing various datasets to replace or augment the original data by an average improvement of 4.30% in Recall@k and 4.65% in NDCG@k.
Related papers
- Exploring the Landscape for Generative Sequence Models for Specialized Data Synthesis [0.0]
This paper introduces a novel approach that leverages three generative models of varying complexity to synthesize Malicious Network Traffic.
Our approach transforms numerical data into text, re-framing data generation as a language modeling task.
Our method surpasses state-of-the-art generative models in producing high-fidelity synthetic data.
arXiv Detail & Related papers (2024-11-04T09:51:10Z) - Mitigating the Privacy Issues in Retrieval-Augmented Generation (RAG) via Pure Synthetic Data [51.41288763521186]
Retrieval-augmented generation (RAG) enhances the outputs of language models by integrating relevant information retrieved from external knowledge sources.
RAG systems may face severe privacy risks when retrieving private data.
We propose using synthetic data as a privacy-preserving alternative for the retrieval data.
arXiv Detail & Related papers (2024-06-20T22:53:09Z) - MALLM-GAN: Multi-Agent Large Language Model as Generative Adversarial Network for Synthesizing Tabular Data [10.217822818544475]
We propose a framework to generate synthetic (tabular) data powered by large language models (LLMs)
Our approach significantly enhance the quality of synthetic data generation in common scenarios with small sample sizes.
Our results demonstrate that our model outperforms several state-of-art models regarding generating higher quality synthetic data for downstream tasks while keeping privacy of the real data.
arXiv Detail & Related papers (2024-06-15T06:26:17Z) - Distribution-Aware Data Expansion with Diffusion Models [55.979857976023695]
We propose DistDiff, a training-free data expansion framework based on the distribution-aware diffusion model.
DistDiff consistently enhances accuracy across a diverse range of datasets compared to models trained solely on original data.
arXiv Detail & Related papers (2024-03-11T14:07:53Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
Synthetic data serves as an alternative in training machine learning models.
ensuring that synthetic data mirrors the complex nuances of real-world data is a challenging task.
This paper explores the potential of integrating data-centric AI techniques to guide the synthetic data generation process.
arXiv Detail & Related papers (2023-10-25T20:32:02Z) - Differentially Private Data Generation with Missing Data [25.242190235853595]
We formalize the problems of differential privacy (DP) synthetic data with missing values.
We propose three effective adaptive strategies that significantly improve the utility of the synthetic data.
Overall, this study contributes to a better understanding of the challenges and opportunities for using private synthetic data generation algorithms.
arXiv Detail & Related papers (2023-10-17T19:41:54Z) - Synthetic data, real errors: how (not) to publish and use synthetic data [86.65594304109567]
We show how the generative process affects the downstream ML task.
We introduce Deep Generative Ensemble (DGE) to approximate the posterior distribution over the generative process model parameters.
arXiv Detail & Related papers (2023-05-16T07:30:29Z) - FairGen: Fair Synthetic Data Generation [0.3149883354098941]
We propose a pipeline to generate fairer synthetic data independent of the GAN architecture.
We claim that while generating synthetic data most GANs amplify bias present in the training data but by removing these bias inducing samples, GANs essentially focuses more on real informative samples.
arXiv Detail & Related papers (2022-10-24T08:13:47Z) - TRoVE: Transforming Road Scene Datasets into Photorealistic Virtual
Environments [84.6017003787244]
This work proposes a synthetic data generation pipeline to address the difficulties and domain-gaps present in simulated datasets.
We show that using annotations and visual cues from existing datasets, we can facilitate automated multi-modal data generation.
arXiv Detail & Related papers (2022-08-16T20:46:08Z) - HydraGAN A Multi-head, Multi-objective Approach to Synthetic Data
Generation [8.260059020010454]
We introduce HydraGAN, a new approach to synthetic data generation that introduces multiple generator and discriminator agents into the system.
We observe that HydraGAN outperforms baseline methods for three datasets for multiple criteria of maximizing data realism, maximizing model accuracy, and minimizing re-identification risk.
arXiv Detail & Related papers (2021-11-13T02:19:11Z) - Unsupervised Domain Adaptive Learning via Synthetic Data for Person
Re-identification [101.1886788396803]
Person re-identification (re-ID) has gained more and more attention due to its widespread applications in video surveillance.
Unfortunately, the mainstream deep learning methods still need a large quantity of labeled data to train models.
In this paper, we develop a data collector to automatically generate synthetic re-ID samples in a computer game, and construct a data labeler to simultaneously annotate them.
arXiv Detail & Related papers (2021-09-12T15:51:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.