論文の概要: CAFE: Carbon-Aware Federated Learning in Geographically Distributed Data
Centers
- arxiv url: http://arxiv.org/abs/2311.03615v1
- Date: Mon, 6 Nov 2023 23:59:22 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-08 17:26:47.971209
- Title: CAFE: Carbon-Aware Federated Learning in Geographically Distributed Data
Centers
- Title(参考訳): cafe: 地理的分散データセンターにおけるカーボンアウェアフェデレート学習
- Authors: Jieming Bian, Shaolei Ren, Jie Xu
- Abstract要約: 大規模人工知能(AI)モデルの訓練には、計算能力とエネルギーが要求されるため、炭素フットプリントが増加し、環境に悪影響を及ぼす可能性がある。
本稿は、地理的に分散した(地理的に分散した)データセンターでAIモデルをトレーニングする際の課題を考察し、学習性能と炭素フットプリントのバランスを強調する。
固定炭素フットプリント予算内でのトレーニングを最適化するために,CAFE(Carbon-Aware Federated Learning)と呼ばれる新しいフレームワークを提案する。
- 参考スコア(独自算出の注目度): 18.55041642745595
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Training large-scale artificial intelligence (AI) models demands significant
computational power and energy, leading to increased carbon footprint with
potential environmental repercussions. This paper delves into the challenges of
training AI models across geographically distributed (geo-distributed) data
centers, emphasizing the balance between learning performance and carbon
footprint. We consider Federated Learning (FL) as a solution, which prioritizes
model parameter exchange over raw data, ensuring data privacy and compliance
with local regulations. Given the variability in carbon intensity across
regions, we propose a new framework called CAFE (short for Carbon-Aware
Federated Learning) to optimize training within a fixed carbon footprint
budget. Our approach incorporates coreset selection to assess learning
performance, employs the Lyapunov drift-plus-penalty framework to address the
unpredictability of future carbon intensity, and devises an efficient algorithm
to address the combinatorial complexity of the data center selection. Through
extensive simulations using real-world carbon intensity data, we demonstrate
the efficacy of our algorithm, highlighting its superiority over existing
methods in optimizing learning performance while minimizing environmental
impact.
- Abstract(参考訳): 大規模人工知能(ai)モデルの訓練には、重要な計算能力とエネルギーが必要であり、環境影響の可能性のある炭素フットプリントの増加に繋がる。
本稿は、地理的に分散した(地理的に分散した)データセンターでAIモデルをトレーニングする際の課題を考察し、学習性能と炭素フットプリントのバランスを強調する。
我々はフェデレートラーニング(FL)を、生データよりもモデルパラメータ交換を優先し、データのプライバシとローカル規制の遵守を保証するソリューションとみなす。
地域ごとの炭素強度の変動を考慮したCAFE(Carbon-Aware Federated Learning)と呼ばれる新しいフレームワークを提案し,固定的な炭素フットプリント予算内でのトレーニングを最適化する。
このアプローチでは,コアセット選択を学習性能評価に活用し,リアプノフドリフトプラスペナルティフレームワークを用いて将来の炭素強度の予測不可能性に対処し,データセンタ選択の組合せ複雑性に対処する効率的なアルゴリズムを考案する。
実世界の炭素強度データを用いた広範囲なシミュレーションにより,環境影響を最小限に抑えながら,学習性能を最適化する既存の手法よりも優れていることを示す。
関連論文リスト
- Center-Sensitive Kernel Optimization for Efficient On-Device Incremental Learning [88.78080749909665]
現在のオンデバイストレーニング手法は、破滅的な忘れを考慮せずに、効率的なトレーニングにのみ焦点をあてている。
本稿では,単純だが効果的なエッジフレンドリーなインクリメンタル学習フレームワークを提案する。
本手法は,メモリの削減と近似計算により,平均精度38.08%の高速化を実現する。
論文 参考訳(メタデータ) (2024-06-13T05:49:29Z) - CarbonSense: A Multimodal Dataset and Baseline for Carbon Flux Modelling [9.05128569357374]
データ駆動型カーボンフラックスモデリングのための、最初の機械学習対応データセットであるCarbonSenseを紹介する。
我々の実験は、マルチモーダルなディープラーニング技術がこの領域にもたらす可能性を示している。
論文 参考訳(メタデータ) (2024-06-07T13:47:40Z) - FedGreen: Carbon-aware Federated Learning with Model Size Adaptation [36.283273000969636]
フェデレートラーニング(FL)は、分散クライアントからモデルを構築するための有望な協調フレームワークを提供する。
FLクライアントをホストするクラウドとエッジサーバは、さまざまな電力源を持つ地理的な場所の影響を受け、多様な炭素フットプリントを示す可能性がある。
我々は、クライアントと共有する適応型モデルサイズを採用することにより、モデルを効率的に訓練するための、炭素を意識したFLアプローチであるFedGreenを提案する。
論文 参考訳(メタデータ) (2024-04-23T20:37:26Z) - A Carbon Tracking Model for Federated Learning: Impact of Quantization and Sparsification [5.341266334051207]
フェデレートラーニング(FL)手法は効率的なコミュニケーション技術を採用し、エッジデバイスに機械学習タスクを分散させる。
本稿では,FLシステムのエネルギーおよび炭素フットプリントへの影響をリアルタイムにモニタリングするためのフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-12T07:20:03Z) - A Comparative Study of Machine Learning Algorithms for Anomaly Detection
in Industrial Environments: Performance and Environmental Impact [62.997667081978825]
本研究は,環境の持続可能性を考慮した高性能機械学習モデルの要求に応えることを目的としている。
Decision TreesやRandom Forestsといった従来の機械学習アルゴリズムは、堅牢な効率性とパフォーマンスを示している。
しかし, 資源消費の累積増加にもかかわらず, 最適化された構成で優れた結果が得られた。
論文 参考訳(メタデータ) (2023-07-01T15:18:00Z) - Sustainable AIGC Workload Scheduling of Geo-Distributed Data Centers: A
Multi-Agent Reinforcement Learning Approach [48.18355658448509]
生成的人工知能の最近の進歩は、機械学習トレーニングの需要が急増し、エネルギー消費の大幅な増加によるコスト負担と環境問題を引き起こしている。
地理的に分散したクラウドデータセンタ間でのトレーニングジョブのスケジューリングは、安価で低炭素エネルギーのコンピューティング能力の使用を最適化する機会を浮き彫りにする。
本研究では,実生活におけるワークロードパターン,エネルギー価格,炭素強度を組み込んだクラウドシステムと対話することで,マルチエージェント強化学習とアクタクリティカルな手法に基づく最適協調スケジューリング戦略の学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-04-17T02:12:30Z) - Green Federated Learning [7.003870178055125]
Federated Learning(FL)は、分散エンティティのデータを使用して集中型モデルをトレーニングする機械学習技術である。
FLは、多様なエネルギー源を持つ数億ものグローバル分散エンドユーザーデバイスを活用することができる。
提案するグリーンFLの概念は, FLパラメータを最適化し, 二酸化炭素排出量を最小化するための設計選択を行うものである。
論文 参考訳(メタデータ) (2023-03-26T02:23:38Z) - Measuring the Carbon Intensity of AI in Cloud Instances [91.28501520271972]
我々は,ソフトウェアの炭素強度を測定するための枠組みを提供し,運転中の炭素排出量を測定することを提案する。
私たちは、Microsoft Azureクラウドコンピューティングプラットフォームにおける排出削減のための一連のアプローチを評価します。
論文 参考訳(メタデータ) (2022-06-10T17:04:04Z) - Quasi-Global Momentum: Accelerating Decentralized Deep Learning on
Heterogeneous Data [77.88594632644347]
ディープラーニングモデルの分散トレーニングは、ネットワーク上でデータプライバシとデバイス上での学習を可能にする重要な要素である。
現実的な学習シナリオでは、異なるクライアントのローカルデータセットに異質性が存在することが最適化の課題となる。
本稿では,この分散学習の難しさを軽減するために,運動量に基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2021-02-09T11:27:14Z) - Towards the Systematic Reporting of the Energy and Carbon Footprints of
Machine Learning [68.37641996188133]
我々は、リアルタイムエネルギー消費と二酸化炭素排出量を追跡するための枠組みを導入する。
エネルギー効率のよい強化学習アルゴリズムのためのリーダーボードを作成します。
炭素排出量削減とエネルギー消費削減のための戦略を提案する。
論文 参考訳(メタデータ) (2020-01-31T05:12:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。