Innovation and Word Usage Patterns in Machine Learning
- URL: http://arxiv.org/abs/2311.03633v1
- Date: Tue, 7 Nov 2023 00:41:15 GMT
- Title: Innovation and Word Usage Patterns in Machine Learning
- Authors: V\'itor Bandeira Borges and Daniel Oliveira Cajueiro
- Abstract summary: We identify pivotal themes and fundamental concepts that have emerged within the realm of machine learning.
To quantify the novelty and divergence of research contributions, we employ the Kullback-Leibler Divergence metric.
- Score: 1.3812010983144802
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this study, we delve into the dynamic landscape of machine learning
research evolution. Initially, through the utilization of Latent Dirichlet
Allocation, we discern pivotal themes and fundamental concepts that have
emerged within the realm of machine learning. Subsequently, we undertake a
comprehensive analysis to track the evolutionary trajectories of these
identified themes. To quantify the novelty and divergence of research
contributions, we employ the Kullback-Leibler Divergence metric. This
statistical measure serves as a proxy for ``surprise'', indicating the extent
of differentiation between the content of academic papers and the subsequent
developments in research. By amalgamating these insights, we gain the ability
to ascertain the pivotal roles played by prominent researchers and the
significance of specific academic venues (periodicals and conferences) within
the machine learning domain.
Related papers
- Differentiation and Specialization of Attention Heads via the Refined Local Learning Coefficient [0.49478969093606673]
We introduce refined variants of the Local Learning Coefficient (LLC), a measure of model complexity grounded in singular learning theory.
We study the development of internal structure in transformer language models during training.
arXiv Detail & Related papers (2024-10-03T20:51:02Z) - Retrieval-Enhanced Machine Learning: Synthesis and Opportunities [60.34182805429511]
Retrieval-enhancement can be extended to a broader spectrum of machine learning (ML)
This work introduces a formal framework of this paradigm, Retrieval-Enhanced Machine Learning (REML), by synthesizing the literature in various domains in ML with consistent notations which is missing from the current literature.
The goal of this work is to equip researchers across various disciplines with a comprehensive, formally structured framework of retrieval-enhanced models, thereby fostering interdisciplinary future research.
arXiv Detail & Related papers (2024-07-17T20:01:21Z) - Ontology Embedding: A Survey of Methods, Applications and Resources [54.3453925775069]
Ontologies are widely used for representing domain knowledge and meta data.
One straightforward solution is to integrate statistical analysis and machine learning.
Numerous papers have been published on embedding, but a lack of systematic reviews hinders researchers from gaining a comprehensive understanding of this field.
arXiv Detail & Related papers (2024-06-16T14:49:19Z) - Reproducibility and Geometric Intrinsic Dimensionality: An Investigation on Graph Neural Network Research [0.0]
Building on these efforts we turn towards another critical challenge in machine learning, namely the curse of dimensionality.
Using the closely linked concept of intrinsic dimension we investigate to which the used machine learning models are influenced by the extend dimension of the data sets they are trained on.
arXiv Detail & Related papers (2024-03-13T11:44:30Z) - The Compute Divide in Machine Learning: A Threat to Academic
Contribution and Scrutiny? [1.0985060632689174]
We show that a compute divide has coincided with a reduced representation of academic-only research teams in compute intensive research topics.
To address the challenges arising from this trend, we recommend approaches aimed at thoughtfully expanding academic insights.
arXiv Detail & Related papers (2024-01-04T01:26:11Z) - Towards a General Framework for Continual Learning with Pre-training [55.88910947643436]
We present a general framework for continual learning of sequentially arrived tasks with the use of pre-training.
We decompose its objective into three hierarchical components, including within-task prediction, task-identity inference, and task-adaptive prediction.
We propose an innovative approach to explicitly optimize these components with parameter-efficient fine-tuning (PEFT) techniques and representation statistics.
arXiv Detail & Related papers (2023-10-21T02:03:38Z) - A Diachronic Analysis of Paradigm Shifts in NLP Research: When, How, and
Why? [84.46288849132634]
We propose a systematic framework for analyzing the evolution of research topics in a scientific field using causal discovery and inference techniques.
We define three variables to encompass diverse facets of the evolution of research topics within NLP.
We utilize a causal discovery algorithm to unveil the causal connections among these variables using observational data.
arXiv Detail & Related papers (2023-05-22T11:08:00Z) - Machine Psychology [54.287802134327485]
We argue that a fruitful direction for research is engaging large language models in behavioral experiments inspired by psychology.
We highlight theoretical perspectives, experimental paradigms, and computational analysis techniques that this approach brings to the table.
It paves the way for a "machine psychology" for generative artificial intelligence (AI) that goes beyond performance benchmarks.
arXiv Detail & Related papers (2023-03-24T13:24:41Z) - Foundations and Recent Trends in Multimodal Machine Learning:
Principles, Challenges, and Open Questions [68.6358773622615]
This paper provides an overview of the computational and theoretical foundations of multimodal machine learning.
We propose a taxonomy of 6 core technical challenges: representation, alignment, reasoning, generation, transference, and quantification.
Recent technical achievements will be presented through the lens of this taxonomy, allowing researchers to understand the similarities and differences across new approaches.
arXiv Detail & Related papers (2022-09-07T19:21:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.