LLM-Pilot: Characterize and Optimize Performance of your LLM Inference Services
- URL: http://arxiv.org/abs/2410.02425v1
- Date: Thu, 3 Oct 2024 12:19:06 GMT
- Title: LLM-Pilot: Characterize and Optimize Performance of your LLM Inference Services
- Authors: Małgorzata Łazuka, Andreea Anghel, Thomas Parnell,
- Abstract summary: LLM-Pilot is a first-of-its-kind system for characterizing and predicting performance of LLM inference services.
It learns a predictive model, which can be used to recommend the most cost-effective hardware for a previously unseen LLM.
Compared to existing methods, LLM-Pilot can deliver on performance requirements 33% more frequently, whilst reducing costs by 60% on average.
- Score: 0.5143325455623888
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As Large Language Models (LLMs) are rapidly growing in popularity, LLM inference services must be able to serve requests from thousands of users while satisfying performance requirements. The performance of an LLM inference service is largely determined by the hardware onto which it is deployed, but understanding of which hardware will deliver on performance requirements remains challenging. In this work we present LLM-Pilot - a first-of-its-kind system for characterizing and predicting performance of LLM inference services. LLM-Pilot performs benchmarking of LLM inference services, under a realistic workload, across a variety of GPUs, and optimizes the service configuration for each considered GPU to maximize performance. Finally, using this characterization data, LLM-Pilot learns a predictive model, which can be used to recommend the most cost-effective hardware for a previously unseen LLM. Compared to existing methods, LLM-Pilot can deliver on performance requirements 33% more frequently, whilst reducing costs by 60% on average.
Related papers
- Plug-and-Play Performance Estimation for LLM Services without Relying on Labeled Data [8.360964737763657]
Large Language Model (LLM) services exhibit impressive capability on unlearned tasks leveraging only a few examples by in-context learning (ICL)
This paper introduces a novel method to estimate the performance of LLM services across different tasks and contexts.
arXiv Detail & Related papers (2024-10-10T09:15:14Z) - Achieving Peak Performance for Large Language Models: A Systematic Review [0.0]
Large language models (LLMs) have achieved remarkable success in natural language processing (NLP)
As models grow into the trillion- parameter range, computational and memory costs increase significantly.
This makes it difficult for many researchers to access the resources needed to train or apply these models.
arXiv Detail & Related papers (2024-09-07T13:57:41Z) - Performance Law of Large Language Models [58.32539851241063]
Performance law can be used to guide the choice of LLM architecture and the effective allocation of computational resources.
Performance law can be used to guide the choice of LLM architecture and the effective allocation of computational resources without extensive experiments.
arXiv Detail & Related papers (2024-08-19T11:09:12Z) - ScaleLLM: A Resource-Frugal LLM Serving Framework by Optimizing End-to-End Efficiency [20.33467627548677]
Large language models (LLMs) have surged in popularity and are extensively used in commercial applications.
We conduct a detailed analysis to identify major bottlenecks that impact end-to-end latency in LLM serving systems.
We then propose ScaleLLM, an optimized system for resource-efficient LLM serving.
arXiv Detail & Related papers (2024-07-23T23:37:29Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - Efficient Prompting for LLM-based Generative Internet of Things [88.84327500311464]
Large language models (LLMs) have demonstrated remarkable capacities on various tasks, and integrating the capacities of LLMs into the Internet of Things (IoT) applications has drawn much research attention recently.
Due to security concerns, many institutions avoid accessing state-of-the-art commercial LLM services, requiring the deployment and utilization of open-source LLMs in a local network setting.
We propose a LLM-based Generative IoT (GIoT) system deployed in the local network setting in this study.
arXiv Detail & Related papers (2024-06-14T19:24:00Z) - Parrot: Efficient Serving of LLM-based Applications with Semantic Variable [11.894203842968745]
Parrot is a service system that focuses on the end-to-end experience of LLM-based applications.
A Semantic Variable annotates an input/output variable in the prompt of a request, and creates the data pipeline when connecting multiple LLM requests.
arXiv Detail & Related papers (2024-05-30T09:46:36Z) - An Embarrassingly Simple Approach for LLM with Strong ASR Capacity [56.30595787061546]
We focus on solving one of the most important tasks in the field of speech processing, with speech foundation encoders and large language models (LLM)
Recent works have complex designs such as compressing the output temporally for the speech encoder, tackling modal alignment for the projector, and utilizing parameter-efficient fine-tuning for the LLM.
We found that delicate designs are not necessary, while an embarrassingly simple composition of off-the-shelf speech encoder, LLM, and the only trainable linear projector is competent for the ASR task.
arXiv Detail & Related papers (2024-02-13T23:25:04Z) - Dissecting the Runtime Performance of the Training, Fine-tuning, and
Inference of Large Language Models [26.2566707495948]
Large Language Models (LLMs) have seen great advance in both academia and industry.
We benchmark the end-to-end performance of pre-training, fine-tuning, and serving LLMs in different sizes.
Then, we dive deeper to provide a detailed runtime analysis of the sub-modules, including computing and communication operators in LLMs.
arXiv Detail & Related papers (2023-11-07T03:25:56Z) - FederatedScope-LLM: A Comprehensive Package for Fine-tuning Large
Language Models in Federated Learning [70.38817963253034]
This paper first discusses these challenges of federated fine-tuning LLMs, and introduces our package FS-LLM as a main contribution.
We provide comprehensive federated parameter-efficient fine-tuning algorithm implementations and versatile programming interfaces for future extension in FL scenarios.
We conduct extensive experiments to validate the effectiveness of FS-LLM and benchmark advanced LLMs with state-of-the-art parameter-efficient fine-tuning algorithms in FL settings.
arXiv Detail & Related papers (2023-09-01T09:40:36Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
Large language models (LLMs) have shown remarkable capabilities in language understanding and generation.
We tackle the compression of LLMs within the bound of two constraints: being task-agnostic and minimizing the reliance on the original training dataset.
Our method, named LLM-Pruner, adopts structural pruning that selectively removes non-critical coupled structures.
arXiv Detail & Related papers (2023-05-19T12:10:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.