論文の概要: A Survey of Large Language Models Attribution
- arxiv url: http://arxiv.org/abs/2311.03731v1
- Date: Tue, 7 Nov 2023 05:20:09 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-08 16:50:40.199227
- Title: A Survey of Large Language Models Attribution
- Title(参考訳): 大規模言語モデルの帰属に関する調査
- Authors: Dongfang Li, Zetian Sun, Xinshuo Hu, Zhenyu Liu, Ziyang Chen, Baotian
Hu, Aiguo Wu, Min Zhang
- Abstract要約: オープンドメイン生成システムは、会話型AIの分野で大きな注目を集めている。
本稿では,これらのシステムで使用される属性機構について概説する。
- 参考スコア(独自算出の注目度): 28.128932033711877
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Open-domain generative systems have gained significant attention in the field
of conversational AI (e.g., generative search engines). This paper presents a
comprehensive review of the attribution mechanisms employed by these systems,
particularly large language models. Though attribution or citation improve the
factuality and verifiability, issues like ambiguous knowledge reservoirs,
inherent biases, and the drawbacks of excessive attribution can hinder the
effectiveness of these systems. The aim of this survey is to provide valuable
insights for researchers, aiding in the refinement of attribution methodologies
to enhance the reliability and veracity of responses generated by open-domain
generative systems. We believe that this field is still in its early stages;
hence, we maintain a repository to keep track of ongoing studies at
https://github.com/HITsz-TMG/awesome-llm-attributions.
- Abstract(参考訳): オープンドメイン生成システムは会話型ai(例えば生成型検索エンジン)の分野で大きな注目を集めている。
本稿では,これらのシステム,特に大規模言語モデルが採用する帰属機構について概説する。
帰属や引用は事実と妥当性を改善するが、曖昧な知識貯水池、固有のバイアス、過剰な帰属の欠点はこれらのシステムの有効性を妨げる。
本研究の目的は,オープンドメイン生成システムによる応答の信頼性と妥当性を高めるために,帰属方法論の洗練を支援するために,研究者に貴重な洞察を提供することである。
この分野はまだ初期段階にあると考えているので、現在進行中の研究を https://github.com/HITsz-TMG/awesome-llm-attributions で追跡するリポジトリを維持しています。
関連論文リスト
- Context Awareness Gate For Retrieval Augmented Generation [2.749898166276854]
Retrieval Augmented Generation (RAG) は、大規模言語モデル(LLM)の限界を軽減し、ドメイン固有の質問に答える手段として広く採用されている。
これまでの研究は主に、取得したデータチャンクの精度と品質を改善し、生成パイプライン全体のパフォーマンスを向上させることに重点を置いてきた。
オープンドメイン質問応答における無関係情報検索の効果について検討し,LLM出力の品質に対する顕著な有害な影響を明らかにする。
論文 参考訳(メタデータ) (2024-11-25T06:48:38Z) - Do RAG Systems Cover What Matters? Evaluating and Optimizing Responses with Sub-Question Coverage [74.70255719194819]
サブクエストカバレッジに基づく新しいフレームワークを導入し、RAGシステムが質問の異なる面にどのように対処するかを計測する。
このフレームワークを使用して、You.com、Perplexity AI、Bing Chatの3つの商用生成応答エンジンを評価します。
すべての回答エンジンは、バックグラウンドやフォローアップよりも、コアサブクエストを頻繁にカバーしていますが、コアサブクエストの約50%を見逃しています。
論文 参考訳(メタデータ) (2024-10-20T22:59:34Z) - Trustworthiness in Retrieval-Augmented Generation Systems: A Survey [59.26328612791924]
Retrieval-Augmented Generation (RAG)は、大規模言語モデル(LLM)の開発において、急速に重要なパラダイムへと成長してきた。
本稿では,RAGシステムの信頼性を,事実性,堅牢性,公正性,透明性,説明責任,プライバシの6つの面で評価する統一的な枠組みを提案する。
論文 参考訳(メタデータ) (2024-09-16T09:06:44Z) - A Comprehensive Survey of Advanced Persistent Threat Attribution: Taxonomy, Methods, Challenges and Open Research Problems [3.410195565199523]
Advanced Persistent Threat Attributionは、サイバーセキュリティにおける重要な課題である。
人工知能(AI)と機械学習(ML)技術の普及に伴い、研究者たちは、サイバー脅威を責任あるアクターにリンクする自動化ソリューションの開発に注力している。
自動帰属に関する以前の文献では、自動帰属プロセスに役立つ自動化された方法と関連するアーティファクトの体系的なレビューが欠けている。
論文 参考訳(メタデータ) (2024-09-07T12:42:43Z) - Model Internals-based Answer Attribution for Trustworthy Retrieval-Augmented Generation [8.975024781390077]
MIRAGE --Model Internals-based RAG Explanations -- このモデル内部を用いたプラグアンドプレイアプローチは、質問応答アプリケーションにおける忠実な回答属性である。
提案手法を多言語QAデータセット上で評価し,人間の回答属性と高い一致性を見いだした。
論文 参考訳(メタデータ) (2024-06-19T16:10:26Z) - Prospector Heads: Generalized Feature Attribution for Large Models & Data [82.02696069543454]
本稿では,説明に基づく帰属手法の効率的かつ解釈可能な代替手段であるプロスペクタヘッドを紹介する。
入力データにおけるクラス固有のパターンの解釈と発見を、プロファイラヘッドがいかに改善できるかを実証する。
論文 参考訳(メタデータ) (2024-02-18T23:01:28Z) - Evaluating and Modeling Attribution for Cross-Lingual Question Answering [80.4807682093432]
この研究は、言語間質問応答の属性を初めて研究したものである。
我々は、5つの言語でデータを収集し、最先端の言語間QAシステムの属性レベルを評価する。
回答のかなりの部分は、検索されたどのパスにも帰属しないことがわかった。
論文 参考訳(メタデータ) (2023-05-23T17:57:46Z) - Deep networks for system identification: a Survey [56.34005280792013]
システム識別は、入力出力データから動的システムの数学的記述を学習する。
同定されたモデルの主な目的は、以前の観測から新しいデータを予測することである。
我々は、フィードフォワード、畳み込み、リカレントネットワークなどの文献で一般的に採用されているアーキテクチャについて論じる。
論文 参考訳(メタデータ) (2023-01-30T12:38:31Z) - Investigating Fairness Disparities in Peer Review: A Language Model
Enhanced Approach [77.61131357420201]
我々は、大規模言語モデル(LM)の助けを借りて、ピアレビューにおける公平性格差の徹底した厳密な研究を行う。
我々は、2017年から現在までのICLR(International Conference on Learning Representations)カンファレンスで、包括的なリレーショナルデータベースを収集、組み立て、維持しています。
我々は、著作者性別、地理、著作者、機関的名声など、興味のある複数の保護属性に対する公平性の違いを仮定し、研究する。
論文 参考訳(メタデータ) (2022-11-07T16:19:42Z) - A Survey of Graph-based Deep Learning for Anomaly Detection in
Distributed Systems [2.3551989288556774]
分散システムにおける異常を識別するグラフベースのアルゴリズムの可能性を探る。
私たちの目標の1つは、現実の課題に対処する能力を概念的に分析するグラフベースのアプローチについて、詳細な調査を行うことです。
本研究は,その分野における現状研究論文の概要と,その特性を比較比較・比較するものである。
論文 参考訳(メタデータ) (2022-06-08T20:19:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。