論文の概要: A Survey of Graph-based Deep Learning for Anomaly Detection in
Distributed Systems
- arxiv url: http://arxiv.org/abs/2206.04149v2
- Date: Thu, 1 Jun 2023 21:27:49 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-05 21:19:07.187541
- Title: A Survey of Graph-based Deep Learning for Anomaly Detection in
Distributed Systems
- Title(参考訳): 分散システムにおける異常検出のためのグラフベースディープラーニングの検討
- Authors: Armin Danesh Pazho, Ghazal Alinezhad Noghre, Arnab A Purkayastha,
Jagannadh Vempati, Otto Martin, and Hamed Tabkhi
- Abstract要約: 分散システムにおける異常を識別するグラフベースのアルゴリズムの可能性を探る。
私たちの目標の1つは、現実の課題に対処する能力を概念的に分析するグラフベースのアプローチについて、詳細な調査を行うことです。
本研究は,その分野における現状研究論文の概要と,その特性を比較比較・比較するものである。
- 参考スコア(独自算出の注目度): 2.3551989288556774
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anomaly detection is a crucial task in complex distributed systems. A
thorough understanding of the requirements and challenges of anomaly detection
is pivotal to the security of such systems, especially for real-world
deployment. While there are many works and application domains that deal with
this problem, few have attempted to provide an in-depth look at such systems.
In this survey, we explore the potentials of graph-based algorithms to identify
anomalies in distributed systems. These systems can be heterogeneous or
homogeneous, which can result in distinct requirements. One of our objectives
is to provide an in-depth look at graph-based approaches to conceptually
analyze their capability to handle real-world challenges such as heterogeneity
and dynamic structure. This study gives an overview of the State-of-the-Art
(SotA) research articles in the field and compare and contrast their
characteristics. To facilitate a more comprehensive understanding, we present
three systems with varying abstractions as use cases. We examine the specific
challenges involved in anomaly detection within such systems. Subsequently, we
elucidate the efficacy of graphs in such systems and explicate their
advantages. We then delve into the SotA methods and highlight their strength
and weaknesses, pointing out the areas for possible improvements and future
works.
- Abstract(参考訳): 異常検出は複雑な分散システムにおいて重要なタスクである。
異常検出の要件と課題を徹底的に理解することは、そのようなシステムのセキュリティ、特に現実のデプロイメントにとって重要である。
この問題を扱う作業やアプリケーションドメインはたくさんありますが、そのようなシステムについて深く検討しようとする試みはごくわずかです。
本研究では,分散システムにおける異常を同定するグラフベースアルゴリズムの可能性について検討する。
これらの系は不均一あるいは均質であり、異なる要求をもたらす。
目的の1つは、不均一性や動的構造といった現実世界の課題に対処するそれらの能力を概念的に分析するためのグラフベースのアプローチを詳細に検討することである。
本研究は,その分野における現状研究論文の概要と,その特性を比較比較・比較するものである。
より包括的な理解を容易にするために、ユースケースとして様々な抽象化を持つ3つのシステムを提案する。
このようなシステムにおける異常検出に関わる具体的な課題について検討する。
その後,このようなシステムにおけるグラフの有効性を解明し,その利点を明らかにする。
次に、SotAの手法を掘り下げて、その強みと弱点を強調し、改善の可能性と今後の作業の分野を指摘します。
関連論文リスト
- A Comprehensive Library for Benchmarking Multi-class Visual Anomaly Detection [52.228708947607636]
本稿では,新しい手法のモジュラーフレームワークであるADerを包括的視覚異常検出ベンチマークとして紹介する。
このベンチマークには、産業ドメインと医療ドメインからの複数のデータセットが含まれており、15の最先端メソッドと9つの包括的なメトリクスを実装している。
我々は,異なる手法の長所と短所を客観的に明らかにし,多クラス視覚異常検出の課題と今後の方向性について考察する。
論文 参考訳(メタデータ) (2024-06-05T13:40:07Z) - Progressing from Anomaly Detection to Automated Log Labeling and
Pioneering Root Cause Analysis [53.24804865821692]
本研究では、ログ異常の分類を導入し、ラベル付けの課題を軽減するために、自動ラベリングについて検討する。
この研究は、根本原因分析が異常検出に続く未来を予見し、異常の根本原因を解明する。
論文 参考訳(メタデータ) (2023-12-22T15:04:20Z) - Interactive System-wise Anomaly Detection [66.3766756452743]
異常検出は様々なアプリケーションにおいて基本的な役割を果たす。
既存のメソッドでは、インスタンスがデータとして容易に観察できないシステムであるシナリオを扱うのが難しい。
システム埋め込みを学習するエンコーダデコーダモジュールを含むエンドツーエンドアプローチを開発する。
論文 参考訳(メタデータ) (2023-04-21T02:20:24Z) - Heterogeneous Anomaly Detection for Software Systems via Semi-supervised
Cross-modal Attention [29.654681594903114]
ヘテロジニアスデータに基づいてシステム異常を識別する,最初のエンドツーエンドの半教師付きアプローチであるHadesを提案する。
当社のアプローチでは,ログセマンティクスとメトリックパターンを融合させることで,システムステータスのグローバルな表現を学ぶために階層的アーキテクチャを採用している。
我々はHuawei Cloudの大規模シミュレーションデータとデータセットに基づいてHadesを広範囲に評価する。
論文 参考訳(メタデータ) (2023-02-14T09:02:11Z) - A Hierarchical Approach to Conditional Random Fields for System Anomaly
Detection [0.8164433158925593]
大規模システムにおける異常事象を認識する異常検出は多くの産業において重要である。
階層的なアプローチは、複雑なシステムと局所的な文脈における暗黙の関係を利用する。
論文 参考訳(メタデータ) (2022-10-26T21:02:47Z) - Learning Physical Concepts in Cyber-Physical Systems: A Case Study [72.74318982275052]
本稿では,時系列データにおける物理概念の学習方法に関する研究の現状について概説する。
また,3タンクシステムの例を用いて,最先端技術から最も重要な手法を分析した。
論文 参考訳(メタデータ) (2021-11-28T14:24:52Z) - A Comprehensive Survey on Graph Anomaly Detection with Deep Learning [37.83120827837028]
異常は稀な観測(例えば、データ記録や出来事)であり、他のものとは大きく異なる。
本研究では,グラフ異常検出のための現代のディープラーニング技術について,体系的かつ包括的にレビューすることを目的とする。
論文 参考訳(メタデータ) (2021-06-14T06:04:57Z) - A neural anisotropic view of underspecification in deep learning [60.119023683371736]
ニューラルネットが問題の未特定化を扱う方法が,データ表現に大きく依存していることを示す。
深層学習におけるアーキテクチャ的インダクティブバイアスの理解は,これらのシステムの公平性,堅牢性,一般化に対処する上で基本的であることを強調した。
論文 参考訳(メタデータ) (2021-04-29T14:31:09Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - Smart Anomaly Detection in Sensor Systems: A Multi-Perspective Review [0.0]
異常検出は、期待される振る舞いから著しく逸脱するデータパターンを特定することに関わる。
データ分析からe-health、サイバーセキュリティ、予測メンテナンス、障害防止、産業自動化に至るまで、幅広いアプリケーション領域があるため、これは重要な研究課題である。
本稿では,センサシステムの特定の領域における異常検出に使用される最先端手法について概説する。
論文 参考訳(メタデータ) (2020-10-27T09:56:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。