A quantum central path algorithm for linear optimization
- URL: http://arxiv.org/abs/2311.03977v2
- Date: Wed, 16 Oct 2024 12:11:03 GMT
- Title: A quantum central path algorithm for linear optimization
- Authors: Brandon Augustino, Jiaqi Leng, Giacomo Nannicini, Tamás Terlaky, Xiaodi Wu,
- Abstract summary: We propose a novel quantum algorithm for solving linear optimization problems by quantum-mechanical simulation of the central path.
This approach yields an algorithm for solving linear optimization problems involving $m$ constraints and $n$ variables to $varepsilon$-optimality.
In the standard gate model (i.e., without access to quantum RAM), our algorithm can obtain highly-precise solutions to LO problems using at most $$mathcalO left( sqrtm + n textsfnnz (A) fracR_1
- Score: 5.450016817940232
- License:
- Abstract: We propose a novel quantum algorithm for solving linear optimization problems by quantum-mechanical simulation of the central path. While interior point methods follow the central path with an iterative algorithm that works with successive linearizations of the perturbed KKT conditions, we perform a single simulation working directly with the nonlinear complementarity equations. This approach yields an algorithm for solving linear optimization problems involving $m$ constraints and $n$ variables to $\varepsilon$-optimality using $\mathcal{O} \left( \sqrt{m + n} \frac{R_{1}}{\varepsilon}\right)$ queries to an oracle that evaluates a potential function, where $R_{1}$ is an $\ell_{1}$-norm upper bound on the size of the optimal solution. In the standard gate model (i.e., without access to quantum RAM) our algorithm can obtain highly-precise solutions to LO problems using at most $$\mathcal{O} \left( \sqrt{m + n} \textsf{nnz} (A) \frac{R_1}{\varepsilon}\right)$$ elementary gates, where $\textsf{nnz} (A)$ is the total number of non-zero elements found in the constraint matrix.
Related papers
- Obtaining Lower Query Complexities through Lightweight Zeroth-Order Proximal Gradient Algorithms [65.42376001308064]
We propose two variance reduced ZO estimators for complex gradient problems.
We improve the state-of-the-art function complexities from $mathcalOleft(minfracdn1/2epsilon2, fracdepsilon3right)$ to $tildecalOleft(fracdepsilon2right)$.
arXiv Detail & Related papers (2024-10-03T15:04:01Z) - A Fully Parameter-Free Second-Order Algorithm for Convex-Concave Minimax Problems with Optimal Iteration Complexity [2.815239177328595]
We propose a Lipschitz-free cubic regularization (LF-CR) algorithm for solving the convex-concave minimax optimization problem.
We also propose a fully parameter-free cubic regularization (FF-CR) algorithm that does not require any parameters of the problem.
To the best of our knowledge, the proposed FF-CR algorithm is the first completely parameter-free second-order algorithm for solving convex-concave minimax optimization problems.
arXiv Detail & Related papers (2024-07-04T01:46:07Z) - An Oblivious Stochastic Composite Optimization Algorithm for Eigenvalue
Optimization Problems [76.2042837251496]
We introduce two oblivious mirror descent algorithms based on a complementary composite setting.
Remarkably, both algorithms work without prior knowledge of the Lipschitz constant or smoothness of the objective function.
We show how to extend our framework to scale and demonstrate the efficiency and robustness of our methods on large scale semidefinite programs.
arXiv Detail & Related papers (2023-06-30T08:34:29Z) - Efficient quantum linear solver algorithm with detailed running costs [0.0]
We introduce a quantum linear solver algorithm combining ideasdiabatic quantum computing with filtering techniques based on quantum signal processing.
Our protocol reduces the cost of quantum linear solvers over state-of-the-art close to an order of magnitude for early implementations.
arXiv Detail & Related papers (2023-05-19T00:07:32Z) - Best Policy Identification in Linear MDPs [70.57916977441262]
We investigate the problem of best identification in discounted linear Markov+Delta Decision in the fixed confidence setting under a generative model.
The lower bound as the solution of an intricate non- optimization program can be used as the starting point to devise such algorithms.
arXiv Detail & Related papers (2022-08-11T04:12:50Z) - Sketching Algorithms and Lower Bounds for Ridge Regression [65.0720777731368]
We give a sketching-based iterative algorithm that computes $1+varepsilon$ approximate solutions for the ridge regression problem.
We also show that this algorithm can be used to give faster algorithms for kernel ridge regression.
arXiv Detail & Related papers (2022-04-13T22:18:47Z) - Quantum Algorithm for Solving a Quadratic Nonlinear System of Equations [0.22940141855172036]
The complexity of our algorithm is $O(rm polylog(n/epsilon))$, which provides an exponential improvement over the optimal classical algorithm in dimension $n$.
Our algorithm exponentially accelerates the solution of QNSE and has wide applications in all kinds of nonlinear problems.
arXiv Detail & Related papers (2021-12-03T00:27:16Z) - Quantum-classical algorithms for skewed linear systems with optimized
Hadamard test [10.386115383285288]
We discuss hybrid quantum-classical algorithms for skewed linear systems for over-determined and under-determined cases.
Our input model is such that the columns or rows of the matrix defining the linear system are given via quantum circuits of poly-logarithmic depth.
We present an algorithm for the special case of a factorized linear system with run time poly-logarithmic in the respective dimensions.
arXiv Detail & Related papers (2020-09-28T12:59:27Z) - Streaming Complexity of SVMs [110.63976030971106]
We study the space complexity of solving the bias-regularized SVM problem in the streaming model.
We show that for both problems, for dimensions of $frac1lambdaepsilon$, one can obtain streaming algorithms with spacely smaller than $frac1lambdaepsilon$.
arXiv Detail & Related papers (2020-07-07T17:10:00Z) - Solving the Robust Matrix Completion Problem via a System of Nonlinear
Equations [28.83358353043287]
We consider the problem of robust matrix completion, which aims to recover a low rank matrix $L_*$ and a sparse matrix $S_*$ from incomplete observations of their sum $M=L_*+S_*inmathbbRmtimes n$.
The algorithm is highly parallelizable and suitable for large scale problems.
Numerical simulations show that the simple method works as expected and is comparable with state-of-the-art methods.
arXiv Detail & Related papers (2020-03-24T17:28:15Z) - Second-order Conditional Gradient Sliding [79.66739383117232]
We present the emphSecond-Order Conditional Gradient Sliding (SOCGS) algorithm.
The SOCGS algorithm converges quadratically in primal gap after a finite number of linearly convergent iterations.
It is useful when the feasible region can only be accessed efficiently through a linear optimization oracle.
arXiv Detail & Related papers (2020-02-20T17:52:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.