Counterdiabatic optimized driving in quantum phase sensitive models
- URL: http://arxiv.org/abs/2311.04282v1
- Date: Tue, 7 Nov 2023 19:00:22 GMT
- Title: Counterdiabatic optimized driving in quantum phase sensitive models
- Authors: Francesco Pio Barone and Oriel Kiss and Michele Grossi and Sofia
Vallecorsa and Antonio Mandarino
- Abstract summary: State preparation plays a pivotal role in numerous quantum algorithms, including quantum phase estimation.
This paper extends and benchmarks counterdiabatic driving protocols across three one-dimensional spin systems characterized by phase transitions.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: State preparation plays a pivotal role in numerous quantum algorithms,
including quantum phase estimation. This paper extends and benchmarks
counterdiabatic driving protocols across three one-dimensional spin systems
characterized by phase transitions: the axial next-nearest neighbor Ising
(ANNNI), XXZ, and Haldane-Shastry (HS) models. We perform quantum optimal
control protocols by optimizing the energy cost function, which can always be
evaluated as opposed to the fidelity one requiring the exact state. Moreover,
we incorporate Bayesian optimization within a code package for computing
various adiabatic gauge potentials. This protocol consistently surpasses
standard annealing schedules, often achieving performance improvements of
several orders of magnitude. Notably, the ANNNI model stands out as a notable
example, where fidelities exceeding 0.5 are attainable in most cases.
Furthermore, the optimized paths exhibits promising generalization capabilities
to higher-dimensional systems, allowing for the extension of parameters from
smaller models. This opens up possibilities for applying the protocol to
higher-dimensional systems. However, our investigations reveal limitations in
the case of the XXZ and HS models, particularly when transitioning away from
the ferromagnetic phase. This suggests that finding optimal diabatic gauge
potentials for specific systems remains an important research direction.
Related papers
- Heisenberg-limited Bayesian phase estimation with low-depth digital quantum circuits [0.0]
We develop and analyze a scheme that achieves near-optimal precision up to a constant overhead for Bayesian phase estimation.
We show that the proposed scheme outperforms known schemes in the literature that utilize a similar set of initial states.
We also propose an efficient phase unwinding protocol to extend the dynamic range of the proposed scheme.
arXiv Detail & Related papers (2024-07-08T14:59:16Z) - Realisation of versatile and effective quantum metrology using a single bosonic mode [0.0]
We present a versatile and on-demand protocol for deterministic parameter estimation on a single bosonic mode.
With low photon numbers of up to 1.76, we achieve quantum-enhanced precision approaching the Heisenberg scaling.
We show that the gain or sensitivity range can be further enhanced on the fly by tailoring the input states.
arXiv Detail & Related papers (2024-03-22T05:47:47Z) - Optimal control in large open quantum systems: the case of transmon readout and reset [44.99833362998488]
We present a framework that combines the adjoint state method together with reverse-time back-propagation to solve prohibitively large open-system quantum control problems.
We apply this framework to optimize two inherently dissipative operations in superconducting qubits.
Our results show that, given a fixed set of system parameters, shaping the control pulses can yield 2x improvements in the fidelity and duration for both of these operations.
arXiv Detail & Related papers (2024-03-21T18:12:51Z) - Nonadiabatic geometric quantum gates with on-demand trajectories [2.5539863252714636]
We propose a general protocol for constructing geometric quantum gates with on-demand trajectories.
Our scheme adopts reverse engineering of the target Hamiltonian using smooth pulses.
Because a particular geometric gate can be induced by various different trajectories, we can further optimize the gate performance.
arXiv Detail & Related papers (2024-01-20T06:57:36Z) - Variational waveguide QED simulators [58.720142291102135]
Waveguide QED simulators are made by quantum emitters interacting with one-dimensional photonic band-gap materials.
Here, we demonstrate how these interactions can be a resource to develop more efficient variational quantum algorithms.
arXiv Detail & Related papers (2023-02-03T18:55:08Z) - Optimal steering of matrix product states and quantum many-body scars [0.0]
We formulate an approach to control quantum systems based on matrix product states(MPS)
We compare counter-diabatic and leakage minimization approaches to the so-called local steering problem.
We find that the leakage-based approach generally outperforms the counter-diabatic framework.
arXiv Detail & Related papers (2022-04-06T15:34:27Z) - Dynamical learning of a photonics quantum-state engineering process [48.7576911714538]
Experimentally engineering high-dimensional quantum states is a crucial task for several quantum information protocols.
We implement an automated adaptive optimization protocol to engineer photonic Orbital Angular Momentum (OAM) states.
This approach represents a powerful tool for automated optimizations of noisy experimental tasks for quantum information protocols and technologies.
arXiv Detail & Related papers (2022-01-14T19:24:31Z) - Bosonic field digitization for quantum computers [62.997667081978825]
We address the representation of lattice bosonic fields in a discretized field amplitude basis.
We develop methods to predict error scaling and present efficient qubit implementation strategies.
arXiv Detail & Related papers (2021-08-24T15:30:04Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Reinforcement Learning for Many-Body Ground-State Preparation Inspired
by Counterdiabatic Driving [2.5614220901453333]
CD-QAOA is designed for quantum many-body systems and optimized using a reinforcement learning (RL) approach.
We show that using terms occurring in the adiabatic gauge potential as generators of additional control unitaries, it is possible to achieve fast high-fidelity many-body control away from the adiabatic regime.
This work paves the way to incorporate recent success from deep learning for the purpose of quantum many-body control.
arXiv Detail & Related papers (2020-10-07T21:13:22Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.