Uncovering Intermediate Variables in Transformers using Circuit Probing
- URL: http://arxiv.org/abs/2311.04354v2
- Date: Fri, 17 Nov 2023 15:15:17 GMT
- Title: Uncovering Intermediate Variables in Transformers using Circuit Probing
- Authors: Michael A. Lepori, Thomas Serre, Ellie Pavlick
- Abstract summary: We propose a new analysis technique -- circuit probing -- that automatically uncovers low-level circuits that compute hypothesized intermediate variables.
We apply this method to models trained on simple arithmetic tasks, demonstrating its effectiveness at (1) deciphering the algorithms that models have learned, (2) revealing modular structure within a model, and (3) tracking the development of circuits over training.
- Score: 32.382094867951224
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural network models have achieved high performance on a wide variety of
complex tasks, but the algorithms that they implement are notoriously difficult
to interpret. In order to understand these algorithms, it is often necessary to
hypothesize intermediate variables involved in the network's computation. For
example, does a language model depend on particular syntactic properties when
generating a sentence? However, existing analysis tools make it difficult to
test hypotheses of this type. We propose a new analysis technique -- circuit
probing -- that automatically uncovers low-level circuits that compute
hypothesized intermediate variables. This enables causal analysis through
targeted ablation at the level of model parameters. We apply this method to
models trained on simple arithmetic tasks, demonstrating its effectiveness at
(1) deciphering the algorithms that models have learned, (2) revealing modular
structure within a model, and (3) tracking the development of circuits over
training. We compare circuit probing to other methods across these three
experiments, and find it on par or more effective than existing analysis
methods. Finally, we demonstrate circuit probing on a real-world use case,
uncovering circuits that are responsible for subject-verb agreement and
reflexive anaphora in GPT2-Small and Medium.
Related papers
- Transformer Circuit Faithfulness Metrics are not Robust [0.04260910081285213]
We measure circuit 'faithfulness' by ablating portions of the model's computation.
We conclude that existing circuit faithfulness scores reflect both the methodological choices of researchers as well as the actual components of the circuit.
The ultimate goal of mechanistic interpretability work is to understand neural networks, so we emphasize the need for more clarity in the precise claims being made about circuits.
arXiv Detail & Related papers (2024-07-11T17:59:00Z) - Explaining Text Similarity in Transformer Models [52.571158418102584]
Recent advances in explainable AI have made it possible to mitigate limitations by leveraging improved explanations for Transformers.
We use BiLRP, an extension developed for computing second-order explanations in bilinear similarity models, to investigate which feature interactions drive similarity in NLP models.
Our findings contribute to a deeper understanding of different semantic similarity tasks and models, highlighting how novel explainable AI methods enable in-depth analyses and corpus-level insights.
arXiv Detail & Related papers (2024-05-10T17:11:31Z) - Transformers are uninterpretable with myopic methods: a case study with
bounded Dyck grammars [36.780346257061495]
Interpretability methods aim to understand the algorithm implemented by a trained model.
We take a critical view of methods that exclusively focus on individual parts of the model.
arXiv Detail & Related papers (2023-12-03T15:34:46Z) - Towards Interpretable Sequence Continuation: Analyzing Shared Circuits in Large Language Models [9.56229382432426]
This research aims to reverse engineer transformer models into human-readable representations that implement algorithmic functions.
By applying circuit interpretability analysis, we identify a key sub-circuit in both GPT-2 Small and Llama-2-7B.
We show that this sub-circuit has effects on various math-related prompts, such as on intervaled circuits, Spanish number word and months continuation, and natural language word problems.
arXiv Detail & Related papers (2023-11-07T16:58:51Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
Multi-modal regression is important in forecasting nonstationary processes or with a complex mixture of distributions.
A Structured Radial Basis Function Network is presented as an ensemble of multiple hypotheses predictors for regression problems.
It is proved that this structured model can efficiently interpolate this tessellation and approximate the multiple hypotheses target distribution.
arXiv Detail & Related papers (2023-09-02T01:27:53Z) - Transformers as Statisticians: Provable In-Context Learning with
In-Context Algorithm Selection [88.23337313766353]
This work first provides a comprehensive statistical theory for transformers to perform ICL.
We show that transformers can implement a broad class of standard machine learning algorithms in context.
A emphsingle transformer can adaptively select different base ICL algorithms.
arXiv Detail & Related papers (2023-06-07T17:59:31Z) - Transformers as Algorithms: Generalization and Implicit Model Selection
in In-context Learning [23.677503557659705]
In-context learning (ICL) is a type of prompting where a transformer model operates on a sequence of examples and performs inference on-the-fly.
We treat the transformer model as a learning algorithm that can be specialized via training to implement-at inference-time-another target algorithm.
We show that transformers can act as an adaptive learning algorithm and perform model selection across different hypothesis classes.
arXiv Detail & Related papers (2023-01-17T18:31:12Z) - Generalization Properties of Retrieval-based Models [50.35325326050263]
Retrieval-based machine learning methods have enjoyed success on a wide range of problems.
Despite growing literature showcasing the promise of these models, the theoretical underpinning for such models remains underexplored.
We present a formal treatment of retrieval-based models to characterize their generalization ability.
arXiv Detail & Related papers (2022-10-06T00:33:01Z) - Amortized Inference for Causal Structure Learning [72.84105256353801]
Learning causal structure poses a search problem that typically involves evaluating structures using a score or independence test.
We train a variational inference model to predict the causal structure from observational/interventional data.
Our models exhibit robust generalization capabilities under substantial distribution shift.
arXiv Detail & Related papers (2022-05-25T17:37:08Z) - Redefining Neural Architecture Search of Heterogeneous Multi-Network
Models by Characterizing Variation Operators and Model Components [71.03032589756434]
We investigate the effect of different variation operators in a complex domain, that of multi-network heterogeneous neural models.
We characterize both the variation operators, according to their effect on the complexity and performance of the model; and the models, relying on diverse metrics which estimate the quality of the different parts composing it.
arXiv Detail & Related papers (2021-06-16T17:12:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.