Transformers are uninterpretable with myopic methods: a case study with
bounded Dyck grammars
- URL: http://arxiv.org/abs/2312.01429v1
- Date: Sun, 3 Dec 2023 15:34:46 GMT
- Title: Transformers are uninterpretable with myopic methods: a case study with
bounded Dyck grammars
- Authors: Kaiyue Wen, Yuchen Li, Bingbin Liu, Andrej Risteski
- Abstract summary: Interpretability methods aim to understand the algorithm implemented by a trained model.
We take a critical view of methods that exclusively focus on individual parts of the model.
- Score: 36.780346257061495
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Interpretability methods aim to understand the algorithm implemented by a
trained model (e.g., a Transofmer) by examining various aspects of the model,
such as the weight matrices or the attention patterns. In this work, through a
combination of theoretical results and carefully controlled experiments on
synthetic data, we take a critical view of methods that exclusively focus on
individual parts of the model, rather than consider the network as a whole. We
consider a simple synthetic setup of learning a (bounded) Dyck language.
Theoretically, we show that the set of models that (exactly or approximately)
solve this task satisfy a structural characterization derived from ideas in
formal languages (the pumping lemma). We use this characterization to show that
the set of optima is qualitatively rich; in particular, the attention pattern
of a single layer can be ``nearly randomized'', while preserving the
functionality of the network. We also show via extensive experiments that these
constructions are not merely a theoretical artifact: even after severely
constraining the architecture of the model, vastly different solutions can be
reached via standard training. Thus, interpretability claims based on
inspecting individual heads or weight matrices in the Transformer can be
misleading.
Related papers
- Cross-Entropy Is All You Need To Invert the Data Generating Process [29.94396019742267]
Empirical phenomena suggest that supervised models can learn interpretable factors of variation in a linear fashion.
Recent advances in self-supervised learning have shown that these methods can recover latent structures by inverting the data generating process.
We prove that even in standard classification tasks, models learn representations of ground-truth factors of variation up to a linear transformation.
arXiv Detail & Related papers (2024-10-29T09:03:57Z) - Learning on Transformers is Provable Low-Rank and Sparse: A One-layer Analysis [63.66763657191476]
We show that efficient numerical training and inference algorithms as low-rank computation have impressive performance for learning Transformer-based adaption.
We analyze how magnitude-based models affect generalization while improving adaption.
We conclude that proper magnitude-based has a slight on the testing performance.
arXiv Detail & Related papers (2024-06-24T23:00:58Z) - Initialization is Critical to Whether Transformers Fit Composite Functions by Inference or Memorizing [10.206921909332006]
Transformers have shown impressive capabilities across various tasks, but their performance on compositional problems remains a topic of debate.
In this work, we investigate the mechanisms of how transformers behave on unseen compositional tasks.
arXiv Detail & Related papers (2024-05-08T20:23:24Z) - Uncovering Intermediate Variables in Transformers using Circuit Probing [32.382094867951224]
We propose a new analysis technique -- circuit probing -- that automatically uncovers low-level circuits that compute hypothesized intermediate variables.
We apply this method to models trained on simple arithmetic tasks, demonstrating its effectiveness at (1) deciphering the algorithms that models have learned, (2) revealing modular structure within a model, and (3) tracking the development of circuits over training.
arXiv Detail & Related papers (2023-11-07T21:27:17Z) - From Bricks to Bridges: Product of Invariances to Enhance Latent Space Communication [19.336940758147442]
It has been observed that representations learned by distinct neural networks conceal structural similarities when the models are trained under similar inductive biases.
We introduce a versatile method to directly incorporate a set of invariances into the representations, constructing a product space of invariant components on top of the latent representations.
We validate our solution on classification and reconstruction tasks, observing consistent latent similarity and downstream performance improvements in a zero-shot stitching setting.
arXiv Detail & Related papers (2023-10-02T13:55:38Z) - Analyzing Transformers in Embedding Space [59.434807802802105]
We present a theoretical analysis where all parameters of a trained Transformer are interpreted by projecting them into the embedding space.
We show that parameters of both pretrained and fine-tuned models can be interpreted in embedding space.
Our findings open the door to interpretation methods that, at least in part, abstract away from model specifics and operate in the embedding space only.
arXiv Detail & Related papers (2022-09-06T14:36:57Z) - Amortized Inference for Causal Structure Learning [72.84105256353801]
Learning causal structure poses a search problem that typically involves evaluating structures using a score or independence test.
We train a variational inference model to predict the causal structure from observational/interventional data.
Our models exhibit robust generalization capabilities under substantial distribution shift.
arXiv Detail & Related papers (2022-05-25T17:37:08Z) - Model-agnostic multi-objective approach for the evolutionary discovery
of mathematical models [55.41644538483948]
In modern data science, it is more interesting to understand the properties of the model, which parts could be replaced to obtain better results.
We use multi-objective evolutionary optimization for composite data-driven model learning to obtain the algorithm's desired properties.
arXiv Detail & Related papers (2021-07-07T11:17:09Z) - Distilling Interpretable Models into Human-Readable Code [71.11328360614479]
Human-readability is an important and desirable standard for machine-learned model interpretability.
We propose to train interpretable models using conventional methods, and then distill them into concise, human-readable code.
We describe a piecewise-linear curve-fitting algorithm that produces high-quality results efficiently and reliably across a broad range of use cases.
arXiv Detail & Related papers (2021-01-21T01:46:36Z) - Learning Invariances for Interpretability using Supervised VAE [0.0]
We learn model invariances as a means of interpreting a model.
We propose a supervised form of variational auto-encoders (VAEs)
We show how combining our model with feature attribution methods it is possible to reach a more fine-grained understanding about the decision process of the model.
arXiv Detail & Related papers (2020-07-15T10:14:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.