AI-accelerated Discovery of Altermagnetic Materials
- URL: http://arxiv.org/abs/2311.04418v3
- Date: Tue, 23 Jul 2024 05:50:15 GMT
- Title: AI-accelerated Discovery of Altermagnetic Materials
- Authors: Ze-Feng Gao, Shuai Qu, Bocheng Zeng, Yang Liu, Ji-Rong Wen, Hao Sun, Peng-Jie Guo, Zhong-Yi Lu,
- Abstract summary: Altermagnetism, a new magnetic phase, has been theoretically proposed and experimentally verified to be distinct from ferromagnetism and antiferromagnetism.
We propose an automated discovery approach empowered by an AI search engine.
We successfully discovered 50 new altermagnetic materials that cover metals, semiconductors, and insulators.
- Score: 48.261668305411845
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Altermagnetism, a new magnetic phase, has been theoretically proposed and experimentally verified to be distinct from ferromagnetism and antiferromagnetism. Although altermagnets have been found to possess many exotic physical properties, the limited availability of known altermagnetic materials hinders the study of such properties. Hence, discovering more types of altermagnetic materials with different properties is crucial for a comprehensive understanding of altermagnetism and thus facilitating new applications in the next generation information technologies, e.g., storage devices and high-sensitivity sensors. Since each altermagnetic material has a unique crystal structure, we propose an automated discovery approach empowered by an AI search engine that employs a pre-trained graph neural network to learn the intrinsic features of the material crystal structure, followed by fine-tuning a classifier with limited positive samples to predict the altermagnetism probability of a given material candidate. Finally, we successfully discovered 50 new altermagnetic materials that cover metals, semiconductors, and insulators confirmed by the first-principles electronic structure calculations. The wide range of electronic structural characteristics reveals that various novel physical properties manifest in these newly discovered altermagnetic materials, e.g., anomalous Hall effect, anomalous Kerr effect, and topological property. Noteworthy, we discovered 4 $i$-wave altermagnetic materials for the first time. Overall, the AI search engine performs much better than human experts and suggests a set of new altermagnetic materials with unique properties, outlining its potential for accelerated discovery of the materials with targeted properties.
Related papers
- 2024 Roadmap on Magnetic Microscopy Techniques and Their Applications in
Materials Science [0.0]
roadmap is aimed as a single access point of information for experts in the field as well as the young generation of students.
We aim to cover a broad portfolio of techniques to perform nano- and microscale magnetic imaging using SQUIDs, spin center and Hall effect magnetometries, scanning probe microscopies, x-ray- and electron-based methods, as well as magnetooptics and nanoMRI.
arXiv Detail & Related papers (2024-01-09T19:35:27Z) - Imaging magnetism evolution of magnetite to megabar pressure range with
quantum sensors in diamond anvil cell [57.91882523720623]
We develop an in-situ magnetic detection technique at megabar pressures with high sensitivity and sub-microscale spatial resolution.
We observe the macroscopic magnetic transition of Fe3O4 in the megabar pressure range from strong ferromagnetism (alpha-Fe3O4) to weak ferromagnetism (beta-Fe3O4) and finally to non-magnetism (gamma-Fe3O4)
The presented method can potentially investigate the spin-orbital coupling and magnetism-superconductivity competition in magnetic systems.
arXiv Detail & Related papers (2023-06-13T15:19:22Z) - Revealing Emergent Magnetic Charge in an Antiferromagnet with Diamond
Quantum Magnetometry [42.60602838972598]
Whirling topological textures play a key role in exotic phases of magnetic materials and offer promise for logic and memory applications.
In antiferromagnets, these textures exhibit enhanced stability and faster dynamics with respect to ferromagnetic counterparts.
One technique that meets the demand of highly sensitive vectorial magnetic field sensing with negligible backaction is diamond quantum magnetometry.
arXiv Detail & Related papers (2023-03-21T18:30:20Z) - Magnetic Electrides: High-Throughput Material Screening, Intriguing
Properties, and Applications [5.368582200742036]
We identify 51 magnetic electrides, each with unique topological states and excellent catalytic performance for N2 fixation.
The novel properties of magnetic electrides suggest potential applications in spintronics, topological electronics, electron emission, and as high-performance catalysts.
arXiv Detail & Related papers (2023-03-16T11:05:23Z) - Sensing of magnetic field effects in radical-pair reactions using a
quantum sensor [50.591267188664666]
Magnetic field effects (MFE) in certain chemical reactions have been well established in the last five decades.
We employ elaborate and realistic models of radical-pairs, considering its coupling to the local spin environment and the sensor.
For two model systems, we derive signals of MFE detectable even in the weak coupling regime between radical-pair and NV quantum sensor.
arXiv Detail & Related papers (2022-09-28T12:56:15Z) - Quantum Imaging of Magnetic Phase Transitions and Spin Fluctuations in
Intrinsic Magnetic Topological Nanoflakes [2.362426226997821]
We report nanoscale quantum imaging of magnetic phase transitions and spin fluctuations in exfoliated MnBi2Te4 (Bi2Te3)n flakes.
Results highlight the unique advantage of nitrogen-vacancy centers in exploring the magnetic properties of emergent quantum materials.
arXiv Detail & Related papers (2021-12-18T07:35:02Z) - Prediction of Large Magnetic Moment Materials With Graph Neural Networks
and Random Forests [0.0]
We use state-of-the-art machine learning methods to scan the Inorganic Crystal Structure Database for ferromagnetic materials.
For random forests, we use a method to select nearly one hundred relevant descriptors based on chemical composition and crystal structure.
We find 15 materials that are likely to have large magnetic moments and have not been yet studied experimentally.
arXiv Detail & Related papers (2021-11-29T17:09:37Z) - Surpassing the Energy Resolution Limit with ferromagnetic torque sensors [55.41644538483948]
We evaluate the optimal magnetic field resolution taking into account the thermomechanical noise and the mechanical detection noise at the standard quantum limit.
We find that the Energy Resolution Limit (ERL), pointed out in recent literature, can be surpassed by many orders of magnitude.
arXiv Detail & Related papers (2021-04-29T15:44:12Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.