Asynchronous Message-Passing and Zeroth-Order Optimization Based Distributed Learning with a Use-Case in Resource Allocation in Communication Networks
- URL: http://arxiv.org/abs/2311.04604v3
- Date: Mon, 02 Dec 2024 18:02:53 GMT
- Title: Asynchronous Message-Passing and Zeroth-Order Optimization Based Distributed Learning with a Use-Case in Resource Allocation in Communication Networks
- Authors: Pourya Behmandpoor, Marc Moonen, Panagiotis Patrinos,
- Abstract summary: Distributed learning and adaptation have received significant interest and found wide-ranging applications in machine learning signal processing.
This paper specifically focuses on a scenario where agents collaborate towards a common task.
Agents, acting as transmitters, collaboratively train their individual policies to maximize a global reward.
- Score: 11.182443036683225
- License:
- Abstract: Distributed learning and adaptation have received significant interest and found wide-ranging applications in machine learning and signal processing. While various approaches, such as shared-memory optimization, multi-task learning, and consensus-based learning (e.g., federated learning and learning over graphs), focus on optimizing either local costs or a global cost, there remains a need for further exploration of their interconnections. This paper specifically focuses on a scenario where agents collaborate towards a common task (i.e., optimizing a global cost equal to aggregated local costs) while effectively having distinct individual tasks (i.e., optimizing individual local parameters in a local cost). Each agent's actions can potentially impact other agents' performance through interactions. Notably, each agent has access to only its local zeroth-order oracle (i.e., cost function value) and shares scalar values, rather than gradient vectors, with other agents, leading to communication bandwidth efficiency and agent privacy. Agents employ zeroth-order optimization to update their parameters, and the asynchronous message-passing between them is subject to bounded but possibly random communication delays. This paper presents theoretical convergence analyses and establishes a convergence rate for nonconvex problems. Furthermore, it addresses the relevant use-case of deep learning-based resource allocation in communication networks and conducts numerical experiments in which agents, acting as transmitters, collaboratively train their individual policies to maximize a global reward, e.g., a sum of data rates.
Related papers
- Decentralized and Lifelong-Adaptive Multi-Agent Collaborative Learning [57.652899266553035]
Decentralized and lifelong-adaptive multi-agent collaborative learning aims to enhance collaboration among multiple agents without a central server.
We propose DeLAMA, a decentralized multi-agent lifelong collaborative learning algorithm with dynamic collaboration graphs.
arXiv Detail & Related papers (2024-03-11T09:21:11Z) - Asynchronous Local Computations in Distributed Bayesian Learning [8.516532665507835]
We propose gossip-based communication to leverage fast computations and reduce communication overhead simultaneously.
We observe faster initial convergence and improved performance accuracy, especially in the low data range.
We achieve on average 78% and over 90% classification accuracy respectively on the Gamma Telescope and mHealth data sets from the UCI ML repository.
arXiv Detail & Related papers (2023-11-06T20:11:41Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
Federated learning is an emerging distributed machine learning method.
We propose a heterogeneous local variant of AMSGrad, named FedLALR, in which each client adjusts its learning rate.
We show that our client-specified auto-tuned learning rate scheduling can converge and achieve linear speedup with respect to the number of clients.
arXiv Detail & Related papers (2023-09-18T12:35:05Z) - Personalized Decentralized Multi-Task Learning Over Dynamic
Communication Graphs [59.96266198512243]
We propose a decentralized and federated learning algorithm for tasks that are positively and negatively correlated.
Our algorithm uses gradients to calculate the correlations among tasks automatically, and dynamically adjusts the communication graph to connect mutually beneficial tasks and isolate those that may negatively impact each other.
We conduct experiments on a synthetic Gaussian dataset and a large-scale celebrity attributes (CelebA) dataset.
arXiv Detail & Related papers (2022-12-21T18:58:24Z) - Distributed Adaptive Learning Under Communication Constraints [54.22472738551687]
This work examines adaptive distributed learning strategies designed to operate under communication constraints.
We consider a network of agents that must solve an online optimization problem from continual observation of streaming data.
arXiv Detail & Related papers (2021-12-03T19:23:48Z) - Cost-Effective Federated Learning in Mobile Edge Networks [37.16466118235272]
Federated learning (FL) is a distributed learning paradigm that enables a large number of mobile devices to collaboratively learn a model without sharing their raw data.
We analyze how to design adaptive FL in mobile edge networks that optimally chooses essential control variables to minimize the total cost.
We develop a low-cost sampling-based algorithm to learn the convergence related unknown parameters.
arXiv Detail & Related papers (2021-09-12T03:02:24Z) - Dif-MAML: Decentralized Multi-Agent Meta-Learning [54.39661018886268]
We propose a cooperative multi-agent meta-learning algorithm, referred to as MAML or Dif-MAML.
We show that the proposed strategy allows a collection of agents to attain agreement at a linear rate and to converge to a stationary point of the aggregate MAML.
Simulation results illustrate the theoretical findings and the superior performance relative to the traditional non-cooperative setting.
arXiv Detail & Related papers (2020-10-06T16:51:09Z) - Jointly Optimizing Dataset Size and Local Updates in Heterogeneous
Mobile Edge Learning [11.191719032853527]
This paper proposes to maximize the accuracy of a distributed machine learning (ML) model trained on learners connected via the resource-constrained wireless edge.
We jointly optimize the number of local/global updates and the task size allocation to minimize the loss while taking into account heterogeneous communication and computation capabilities of each learner.
arXiv Detail & Related papers (2020-06-12T18:19:20Z) - Dynamic Federated Learning [57.14673504239551]
Federated learning has emerged as an umbrella term for centralized coordination strategies in multi-agent environments.
We consider a federated learning model where at every iteration, a random subset of available agents perform local updates based on their data.
Under a non-stationary random walk model on the true minimizer for the aggregate optimization problem, we establish that the performance of the architecture is determined by three factors, namely, the data variability at each agent, the model variability across all agents, and a tracking term that is inversely proportional to the learning rate of the algorithm.
arXiv Detail & Related papers (2020-02-20T15:00:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.