Non-Hermitian Aubry-André-Harper model with short- and long-range p-wave pairing
- URL: http://arxiv.org/abs/2311.04605v2
- Date: Fri, 14 Jun 2024 13:38:42 GMT
- Title: Non-Hermitian Aubry-André-Harper model with short- and long-range p-wave pairing
- Authors: Shaina Gandhi, Jayendra N. Bandyopadhyay,
- Abstract summary: We investigate a non-Hermitian Aubry-Andr'e-Harper model with short-range, as well as long-range p-wave pairing.
We observe the emergence of Majorana zero modes in the case of short-range pairing, whereas massive Dirac modes emerge in the case of long-range pairing.
- Score: 14.37149160708975
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate a non-Hermitian Aubry-Andr\'e-Harper model with short-range, as well as long-range p-wave pairing. Here, the non-Hermiticity is introduced through the onsite potential. A comprehensive analysis of several critical aspects of this system is conducted, which includes eigenspectra, topological properties, localization properties, and the transition from real to complex energies. Specifically, we observe the emergence of Majorana zero modes in the case of short-range pairing, whereas massive Dirac modes emerge in the case of long-range pairing. More importantly, for the case of short-range pairing, we observe two simultaneous phase transitions or double phase transitions: topological and multifractal to localized phase. On the other hand, in the case of the long-range pairing, the topological and multifractal to localized transitions do not coincide. However, for both ranges of pairing, we identify a double phase transition where delocalized (or metallic) to a critical multifractal state is accompanied by an unconventional shift from real to complex energies. Unlike the short-range pairing case, we observe mobility edges in the long-range pairing case.
Related papers
- Entanglement in quenched extended Su-Schrieffer-Heeger model with anomalous dynamical quantum phase transitions [0.0]
We study dynamical quantum phase transitions (DQPTs) in the quenched extended Su-Schrieffer-Heeger (SSH) model.
Anomalous DQPTs, where the number of critical momenta exceeds the winding number differences between the pre-quench and post-quench phases, are observed.
We categorize the phases in the equilibrium model into two classes and distinctive features in the time evolution of the entanglement involving quenches within and across the two classes are identified.
arXiv Detail & Related papers (2024-07-22T02:35:34Z) - Dynamics and Phases of Nonunitary Floquet Transverse-Field Ising Model [0.5141137421503899]
We analyze the nonunitary Floquet- transverse-field I integrable model with complex nearest-neighbor couplings and complex transverse fields.
The scaling of entanglement entropy in steady states and the evolution after a quench are compatible with the non-Hermitian generalization of the quasiparticle picture of Calabrese and Cardy.
arXiv Detail & Related papers (2023-06-12T21:15:11Z) - Quantum chaos and thermalization in the two-mode Dicke model [77.34726150561087]
We discuss the onset of quantum chaos and thermalization in the two-mode Dicke model.
The two-mode Dicke model exhibits normal to superradiant quantum phase transition.
We show that the temporal fluctuations of the expectation value of the collective spin observable around its average are small and decrease with the effective system size.
arXiv Detail & Related papers (2022-07-08T11:16:29Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Genuine Multipartite Correlations in a Boundary Time Crystal [56.967919268256786]
We study genuine multipartite correlations (GMC's) in a boundary time crystal (BTC)
We analyze both (i) the structure (orders) of GMC's among the subsystems, as well as (ii) their build-up dynamics for an initially uncorrelated state.
arXiv Detail & Related papers (2021-12-21T20:25:02Z) - Topological transitions with continuously monitored free fermions [68.8204255655161]
We show the presence of a topological phase transition that is of a different universality class than that observed in stroboscopic projective circuits.
We find that this entanglement transition is well identified by a combination of the bipartite entanglement entropy and the topological entanglement entropy.
arXiv Detail & Related papers (2021-12-17T22:01:54Z) - Rotation-driven transition into coexistent Josephson modes in an
atomtronic dc-SQUID [0.0]
We show that transitions to different arrays of coexistent regimes in the phase space can be attained by rotating a double-well system.
In particular, we show that within a determined rotation frequency interval, a hopping parameter, usually disregarded in nonrotating systems, turns out to rule the dynamics.
arXiv Detail & Related papers (2021-11-19T14:47:54Z) - Quantum correlations, entanglement spectrum and coherence of
two-particle reduced density matrix in the Extended Hubbard Model [62.997667081978825]
We study the ground state properties of the one-dimensional extended Hubbard model at half-filling.
In particular, in the superconducting region, we obtain that the entanglement spectrum signals a transition between a dominant singlet (SS) to triplet (TS) pairing ordering in the system.
arXiv Detail & Related papers (2021-10-29T21:02:24Z) - Entanglement Phases in large-N hybrid Brownian circuits with long-range
couplings [0.0]
We develop solvable models of large-$N$ hybrid quantum circuits on qubits and fermions with long-range power-law interactions.
We find that long-range free-fermionic circuits exhibit a distinct phase diagram with two different fractal entangled phases.
arXiv Detail & Related papers (2021-08-31T18:00:04Z) - Qubit-photon bound states in topological waveguides with long-range
hoppings [62.997667081978825]
Quantum emitters interacting with photonic band-gap materials lead to the appearance of qubit-photon bound states.
We study the features of the qubit-photon bound states when the emitters couple to the bulk modes in the different phases.
We consider the coupling of emitters to the edge modes appearing in the different topological phases.
arXiv Detail & Related papers (2021-05-26T10:57:21Z) - Localization and topological transitions in non-Hermitian quasiperiodic
lattices [1.6530012863603747]
We investigate the localization and topological transitions in a one-dimensional non-Hermitian quasiperiodic lattice.
For interacting spinless fermions, we demonstrate that the extended phase and the many-body localized phase can be identified by the entanglement entropy of eigenstates.
arXiv Detail & Related papers (2021-01-14T08:56:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.